Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antiviral Res ; 212: 105578, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934985

RESUMO

The Zika virus (ZIKV) is an arbovirus and belongs to the Flaviviridae family and Flavivirus genus, with dissemination in the Americas. In Brazil, the predominant strain is the Asian, promoting outbreaks that started in 2015 and are directly related to microcephaly in newborns and Guillain-Barré syndrome in adults. Recently, researchers identified a new African strain circulating in Brazil at the mid-end of 2018 and the beginning of 2019, with the potential to originate a new epidemic. To date, there is no approved vaccine or drug for the treatment of Zika syndrome, and the development of therapeutic alternatives to treat it is of relevance. A critical approach is to use natural products when searching for new chemical agents to treat Zika syndrome. The present investigation describes the preparation of a series of 1,2,3-triazoles derived from the natural product vanillin and the evaluation of their virucide activity. A series of fourteen derivatives were prepared via alkylation of vanillin followed by CuAAC (the copper(I)-catalyzed azide-alkyne cycloaddition) reaction. The compounds were fully characterized by infrared (I.R.), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) techniques. The cytotoxicity of Vero cells and the effect on the Zika Virus of the vanillin derivatives were evaluated. It was found that the most effective compound corresponded to 4-((1-(4-isopropylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxybenzaldehyde (8) (EC50 = 27.14 µM, IC50 = 334.9 µM). Subsequent assessments, namely pre and post-treatment assays, internalization and adsorption inhibition assays, kinetic, electronic microscopy analyses, and zeta potential determination, revealed that compound 8 blocks the Zika virus infection in vitro by acting on the viral particle. A molecular docking study was performed, and the results are also discussed.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Adulto , Recém-Nascido , Humanos , Infecção por Zika virus/prevenção & controle , Células Vero , Simulação de Acoplamento Molecular , Replicação Viral
2.
Microbes Infect ; 22(9): 489-499, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353601

RESUMO

Zika Virus (ZIKV), an arbovirus that belongs to the Flaviviridae family, has become a global concern since its outbreak in the Americas in 2015. With symptoms similar to other Flavivirus as Dengue and Yellow Fever viruses, infections by ZIKV have also been related to several neurological complications such as microcephaly in newborns and Guillain-Barre syndrome. Considering the high prevalence of ZIKV infection in certain areas, the risks that the virus poses to fetal brain development, and the fact that there is no vaccine or specific prophylaxis available, an effective treatment capable of preventing the infection is of potential interest. Therefore, in the present investigation, the antiviral activity on ZIKV of a group of xanthenodiones and intermediate ketones involved in their synthesis was evaluated for the first time. It was found that the compound 2-(2,6-dichlorobenzylidene)cyclohexane-1,3-dione 27 was able to completely inhibit the viral infection of Vero cells as well as to significantly reduce viral load in the brains of newborn Swiss mice. These effects are related to a direct interaction of the compound with the viral particle, blocking the viral adsorption.


Assuntos
Antivirais/química , Antivirais/farmacologia , Sistema Nervoso Central/virologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Simulação por Computador , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Cetonas/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA