Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38675087

RESUMO

The improvement of the mechanical properties of concrete can be achieved with the use of synthetic macrofibers. However, this fiber-matrix interaction will be sufficiently efficient for tensile efforts only when there is a binding agent that associates the characteristics of the paste with the characteristics of the surface of the reinforcing material. As already identified, in a first phase of this research using synthetic microfibers, a better fiber-matrix interaction can be achieved with the surface treatment of synthetic fibers with graphene oxide. In this way, we sought to evaluate the surface treatment with graphene oxide on two synthetic polypropylene macrofibers (macrofiber "A" and macrofiber "B") and its contribution to the concrete transition zone. The surface deposition on the macrofiber was carried out using the ultrasonication method; then, the macrofiber with the best deposition for creating reinforced concrete mixtures was identified. To evaluate the quality of GO deposition, scanning electron microscopy (SEM-FEG) and energy-dispersive spectroscopy (EDS) tests were carried out; the same technique was used to evaluate the macrofiber-matrix transition zone. The SEM-FEG images indicated that macrofiber "B" obtained greater homogeneity in surface deposition and it presented a 13% greater deposition of C in the EDS spectra. The SEM-FEG micrographs for reinforced concrete indicated a reduction in voids in the macrofiber-matrix transition zone for concretes that used macrofibers treated with GO.

2.
Materials (Basel) ; 14(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498700

RESUMO

Lignosulfonate is a cheap material available in large quantities obtained as a byproduct of paper and cellulose. In this work, blends of polypropylene (PP) and sodium lignosulfonate (LGNa) were developed to evaluate the potential use of lignosulfonate as a lightweight, thermal insulation and flame retardant material. The blends were obtained by mixing in a torque rheometer and molded after compression. The blend proprieties were evaluated by physical, morphological, thermal, thermal conductivity, and flammability tests. The measured values were compared with theoretical models. The results indicated that a heterogeneous blend with a higher number of separated domains is formed when the LGNa content increases from 10 to 40 wt%. In addition, the density and thermal conductivity coefficient of the blends studied are not affected by the addition of LGNa. However, when the LGNa content in the blend exceeds 20 wt% the thermal stability and flame retardant proprieties are considerably reduced. The theoretical models based on the rule of mixtures showed a good agreement with the experimental values obtained from blend density, thermal conductivity, and thermal stability. In general, lignosulfonate tested in this work shows potential to be used as a reactive component in polymer blends.

3.
Int J Biol Macromol ; 170: 375-389, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359804

RESUMO

A lignin sample was extracted from Eucalyptus grandis sawdust, by the Klason method, and used as adsorbent for the removal of methylene blue (MB) from aqueous solutions. By using a set of complementary analytical tools, the lignin appeared to be constituted of oxygenated functional groups and aromatic moieties, while showing a specific surface area of 20 m2 g-1 and polydisperse particles. Different experimental conditions with various solid to liquid ratio, pH, as well as other external experimental parameters were investigated for the removal of MB by the lignin sample. The experimental adsorption data at the equilibrium were properly fitted by Langmuir model, while adsorption kinetical isotherms were correctly adjusted by the pseudo-second order model. The MB removal by lignin was spontaneous involving physisorption mechanisms leading to a saturation of the adsorption sites with a maximum adsorbed amount of about 32 mg g-1. The data acquired in this study also emphasized the interests to use lignin as potential adsorbent in the light of its properties for the removal of cationic dyes, including MB, with possible recycling and reuse cycles of lignin without any significant loss of its properties.


Assuntos
Lignina/química , Azul de Metileno/química , Purificação da Água/métodos , Adsorção , Corantes/química , Eucalyptus/química , Concentração de Íons de Hidrogênio , Cinética , Lignina/isolamento & purificação , Extratos Vegetais/química , Água , Poluentes Químicos da Água/química , Madeira
4.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093209

RESUMO

Hemicellulose is one of the most common polysaccharides found in nature. Its use as a green and sustainable raw material for industries is desirable. In this work, an alkaline-alcoholic method was used to extract hemicelluloses from sugarcane bagasse. After extraction, films with 2%, 3% and 4% (w/v) hemicellulose were produced. The films' morphology, thickness, water solubility, tensile properties and thermal stability were evaluated. The Fourier Transform Infrared Spectroscopy (FTIR) results reveal that the method used removes the hemicellulose from bagasse with a low concentration of lignin. The films presented a compact and dense structure with uniformity in thickness associated with higher solubility in water. The increase in hemicellulose content increased tensile strength, but reduced the tensile strain of the films. Thermogravimetric analysis indicated that the increase in hemicellulose content reduced the films' thermal stability. Thus, these films may act as useful, biodegradable and environmentally friendly materials for engineering applications.

5.
Materials (Basel) ; 7(9): 6105-6119, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788179

RESUMO

In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations.

6.
Bioresour Technol ; 126: 7-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073083

RESUMO

The influence of wood components and cellulose crystallinity on the kinetic degradation of different wood species has been investigated using thermogravimetry. Four wood species were studied: Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP). Thermogravimetric results showed that higher extractive contents in the wood accelerate the degradation process and promote an increase in the conversion values at low temperatures. Alternatively, the results indicated that the cellulose crystallinity inhibits wood degradation; organized cellulose regions slow the degradation process because the well-packed cellulose chains impede heat diffusion, which improves the wood's thermal stability. The wood degradation mechanism occurs by diffusion processes when the conversion values are below 0.4. When the conversion values are above 0.5, the degradation is a result of random nucleation with one nucleus in each particle.


Assuntos
Temperatura , Termogravimetria/métodos , Árvores/química , Madeira/química , Cristalização , Cinética , Modelos Químicos
7.
Bioresour Technol ; 109: 148-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306076

RESUMO

The influence of wood components and cellulose crystallinity on the thermal degradation behavior of different wood species has been investigated using thermogravimetry, chemical analysis and X-ray diffraction. Four wood samples, Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP) were used in this study. The results showed that higher extractives contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the wood thermal stability. On the other hand, the thermal decomposition of wood shifted to higher temperatures with increasing wood cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of wood species.


Assuntos
Biotecnologia/métodos , Celulose/química , Tamanho da Partícula , Temperatura , Madeira/química , Cristalização , Análise Diferencial Térmica , Modelos Químicos , Termogravimetria , Difração de Raios X
8.
Waste Manag ; 31(4): 779-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21172732

RESUMO

This paper aims to evaluate the potential for the use of recycled expanded polystyrene and wood flour as materials for the development of wood plastic composites. The effects of wood flour loading and coupling agent addition on the mechanical properties and morphology of wood thermoplastic composites were examined. In addition, a methodology for the thermo-mechanical recycling of expanded polystyrene waste was developed. The results show that the mechanical properties decreased as the wood flour loading increased. On the other hand, the use of poly(styrene-co-maleic anhydride), SMA, as a coupling agent improved the compatibility between the wood flour and polystyrene matrix and the mechanical properties subsequently improved. A morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The density values obtained for the composites were compared with the theoretical values and showed agreement with the rule of mixtures. Based on the findings of this work, it appears that both recycled materials can be used to manufacture composites with high mechanical properties and low density.


Assuntos
Poliestirenos/análise , Resíduos/análise , Madeira/análise , Temperatura Alta , Maleatos/análise , Teste de Materiais , Maleabilidade , Reciclagem , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA