Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 31(7): 1509-25, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16222789

RESUMO

The identification and quantification of flavonoids (rutin and genistin) present in extracts of soybean genotypes, and their effects on the biology and physiology of Anticarsia gemmatalis Hübner (Lep.: Noctuidae) were studied. Analysis of covariance and bicoordinate utilization plots were used to remove the effect of feeding time from pupal weight and consumption as well as to separate pre- and postingestive effects of treatment on A. gemmatalis growth. Genotypes PI 274454, PI 227687, and "IAC-100" extracts in general, caused higher mortality, negatively influenced initial larval and pupal weight, and elongated larval cycle. Larvae fed on the "IAC-100" extract diet ingested larger amounts of food per unit of time, but were less efficient in its conversion to biomass. Leaf extracts of PI 227687 had the largest concentration of rutin (quercitin 3-O-rhamnosylglucoside), followed by PI 274454, and "IAC-100"; PI 74454 also had the highest genistin (genistein 7-O-glucoside) content. The susceptible cultivar "BR-16" showed only a kaempferol-based flavonoid in its chemical profile, indicating that after successive crosses, secondary compounds responsible for plant defenses were eliminated. Genotypes PI 274454, PI 227687, and "IAC-100" showed accentuated resistance characteristics and were considered inadequate sources for the development of A. gemmatalis. Considering rutin and genistin concentration in these genotypes, it is suggested that flavonoids are important factors conferring resistance to A. gemmatalis.


Assuntos
Comportamento Alimentar , Glycine max/metabolismo , Glycine max/parasitologia , Interações Hospedeiro-Parasita , Lepidópteros/fisiologia , Extratos Vegetais/metabolismo , Animais , Flavonoides/metabolismo , Larva/fisiologia , Folhas de Planta
2.
J Chem Ecol ; 29(5): 1223-33, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12857032

RESUMO

The ability of the stink bug (Nezara viridula) to induce and/or increase production of chemical defenses, i.e., flavonoids, in immature seeds of five genotypes of soybean (BR-16, IAC-100, PI 227687, PI 229358, and PI 274454) was investigated under greenhouse and laboratory conditions. Samples from pods of each genotype damaged by stink bug were analyzed for flavonoid content with high performance liquid chromatography. A dual-choice test was conducted to evaluate the feeding preference of N. viridula comparing BR-16 pods treated with extracts of PI 227687 seeds (with and without stink-bug injury), with water-treated pods. Seeds of PI 227687 damaged by N. viridula presented the highest concentration (352 microg/g) of daidzin (4'-hydroxyisoflavone-7-glucoside). The same trend was observed with genistin (4',5,7-trihydroxyisoflavone-7-glucoside): PI 227687 contained 142.4 microg/g, PI 274454,31,6 microg/g, and PI 229358,38.9 microg/g. Seeds damaged by stink bugs had higher isoflavone contents (daidzin and genistin), compared to controls. However, after being damaged, PI 274454 and PI 229358 produced less genistin than the other genotypes and no differences in concentration between damaged and nondamaged plants of this genotypes were observed. The numbers of observations of the insect feeding and the numbers of stylet sheaths left in water-treated BR-16 pods were greater than in those treated with PI 227687 extracts. The insects fed for longer periods on BR-16 pods treated with extract of PI 227687 without injury compared to those that were treated with extract of PI 227687 previously injured by stink bugs. Extracts of PI 227687 pods (damaged or not) were deterrent to adults of N. viridula, and insect injury increased concentrations of daidzin and genistin in PI 227687 seeds. The deterrence seemed to be more pronounced after pods had suffered stink-bug injury.


Assuntos
Comportamento Alimentar , Flavonoides/análise , Flavonoides/biossíntese , Glycine max/química , Glycine max/genética , Heterópteros , Adaptação Fisiológica , Animais , Cromatografia Líquida de Alta Pressão , Flavonoides/genética , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA