Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 39(3): 401-414, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30739252

RESUMO

Maternal diabetes constitutes an unfavorable intrauterine environment for offspring development. Although it is known that diabetes can cause brain alterations and increased risk for neurologic disorders, the relationship between neuroimmune activation, brain changes, and neurodevelopment deficits in the offspring remains unclear. In order to elucidate the short- and long-term biological basis of the developmental outcomes caused by the severe uncontrolled maternal hyperglycemia, we studied apoptosis, neurogenesis, and neuroinflammation pathways in the hippocampus of neonates and young rats born to diabetic dams. Diabetes was induced on gestational day 5 by an injection of streptozotocin. Evaluations of milestones, body growth, and inhibitory avoidance were performed to monitor the offspring development and behavior. Hippocampal modifications were studied through cellular survival by BrdU in the dentate gyrus, expression of apoptosis-regulatory proteins (procaspase 3, caspase 3, and Bcl-2), BDNF, and neuroinflammatory modulation by interleukins, MHC-I, MHC-II, Iba-1, and GFAP proteins. Severe maternal diabetes caused microsomia and neurodevelopmental delay in pups and decrease of Bcl-2, procaspase 3, and caspase 3 in the hippocampus. Moreover, in a later stage of development, it was found an increase of TNF-α and a decrease of procaspase 3, caspase 3, MHC-I, IL-1ß, and BDNF in the hippocampus, as well as impairment in cellular survival in the dentate gyrus. This study showed significant short- and long-term commitments on the development, apoptosis, cell survival, and neuroinflammation in the offspring hippocampus induced by severe uncontrolled maternal hyperglycemia. The data reinforce the need for treatment of maternal hyperglycemic states during pregnancy and breast-feeding.


Assuntos
Apoptose , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Hiperglicemia/complicações , Inflamação/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Glândulas Suprarrenais/patologia , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular , Citocinas/metabolismo , Feminino , Teste de Tolerância a Glucose , Fígado/patologia , Tamanho do Órgão , Gravidez , Ratos Wistar , Estreptozocina , Timo/patologia
2.
Neural Regen Res ; 14(3): 491-500, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30539818

RESUMO

It is widely known that maternal physical exercise is able to induce beneficial improvements in offspring cognition; however, the effects of paternal exercise have not been explored in detail. The present study was designed to evaluate the impact of paternal physical exercise on memory and learning, neuroplasticity and DNA methylation levels in the hippocampus of male offspring. Adult male Wistar rats were divided into two groups: sedentary or exercised fathers. The paternal preconception exercise protocol consisted of treadmill running, 20 minutes daily, 5 consecutive days per week for 22 days, while the mothers were not trained. After mating, paternal sperm was collected for global DNA methylation analysis. At postnatal day 53, the offspring were euthanized, and the hippocampus was dissected to measure cell survival by 5-bromo-2'-deoxiuridine and to determine the expression of synaptophysin, reelin, brain-derived neurotrophic factor and global DNA methylation levels. To measure spatial memory and learning changes in offspring, the Morris water maze paradigm was used. There was an improvement in spatial learning, as well as a significant decrease in hippocampal global DNA methylation levels in the offspring from exercised fathers compared with those from sedentary ones; however, no changes were observed in neuroplasticity biomarkers brain-derived neurotrophic factor, reelin and 5-bromo-2'-deoxiuridine. Finally, the global DNA methylation of paternal sperm was not significantly changed by physical exercise. These results suggest a link between paternal preconception physical activity and cognitive benefit, which may be associated with hippocampal epigenetic programming in male offspring. However, the biological mechanisms of this modulation remain unclear.

3.
Metab Brain Dis ; 29(1): 93-104, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318482

RESUMO

Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.


Assuntos
Diabetes Mellitus Experimental/psicologia , Meio Ambiente , Hipocampo/fisiopatologia , Transtornos da Memória/prevenção & controle , Microglia/imunologia , Animais , Glicemia/análise , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Ligação ao Cálcio/análise , Corticosterona/sangue , Replicação do DNA , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/imunologia , Comportamento Exploratório , Hipocampo/imunologia , Hipocampo/metabolismo , Abrigo para Animais , Masculino , Transtornos da Memória/sangue , Transtornos da Memória/etiologia , Proteínas dos Microfilamentos/análise , Atividade Motora , Neurogênese , Distribuição Aleatória , Ratos , Ratos Wistar , Reconhecimento Psicológico , Método Simples-Cego , Aprendizagem Espacial , Estreptozocina , Sinaptofisina/análise
4.
Clin. biomed. res ; 34(3): 307-312, 2014. graf, tab
Artigo em Português | LILACS | ID: biblio-834462

RESUMO

Introduction: There are some physiological and behavioral variations related to seasonality, and light is the major synchronizer of these variations according to the seasonal functions in temperate latitudes. Thus, the objective of this study was to validate a methodology for photoperiod modification in Wistar rats byevaluating its interference in the biological rhythm. Methods: Three male adult Wistar rats (60 days) were exposed to 3 photoperiods of 17 days each, with different light/dark cycles (LD): LDPP/SDPP Animal, exposed to initial LD 16:30/07:30 (LDPP, long-day photoperiod) and final LD 07:30/16:30 (SDPP, short-day photoperiod); SDPP/LDPP Animal, exposed to initial LD 07:30/16:30 and final LD 16:30/07:30; and final LD 16:30/07:30; and CT Animal, under constant LD 12:00/12:00. LDPP/SDPP and SDPP/LDPP animals underwent an intermediate photoperiod between initial and final LD, in which light exposure was increased or reduced by 30 min each day until the photoperiods were inverted. All animals remained isolated during the study and had their core temperatures continuously measured by sensors implanted in the peritoneal cavity and their locomotive activity assessed by sensors attached to their cages. The data obtained were used to construct histograms. Results: LDPP/SDPP and SDPP/LDPP animals had a longer period of activity in the SDPP than in the LDPP. The temperature of the CT animal followed a rhythmic pattern. The rat strain used was sensitive to changes in photoperiod. Conclusions: The model proposed and validated in this study can be used in experiments that aim to assess the consequences of changes in light exposure.


Introdução: Existem variações fisiológicas e comportamentais relacionadas à sazonalidade, e a luz é o principal sincronizador destas variações de acordo com as funções sazonais em latitudes de climas temperados. Sendo assim, o objetivo deste estudo foi validar uma metodologia de modificação de fotoperíodo com ratos Wistar avaliando sua interferência no ritmo biológico. Métodos: Três ratos Wistar machos adultos (60 dias) foram expostos a 3 fotoperíodos de 17 dias cada, com diferentes ciclos claro/escuro (light/dark, LD): Animal CL/CC, exposto a LD inicial 16:30/07:30 (CL, claro longo) e LD final 07:30/16:30 (CC, claro curto); Animal CC/CL, exposto a LD inicial 07:30/16:30 e LD final 16:30/07:30; e Animal CT, sob LD constante 12:00/12:00. Os animais CL/CC e CC/CL passaram por um fotoperíodo intermediário entre o LD inicial e final, no qual a exposição à luz foi aumentada ou diminuída em 30 min a cada dia até que os fotoperíodos se invertessem. Todos os animais permaneceram isolados durante o estudo e tiveram suas temperaturas corporais continuamente aferidas por sensores implantados na cavidade peritoneal e suas atividades locomotoras medidas por sensores acoplados às suas caixas. Os dados obtidos foram utilizados para construção de histogramas. Resultados: Os animais CL/CC e CC/CL apresentaram maior período de atividade em CC do que em CL. A temperatura do animal CT seguiu um padrão rítmico. A linhagem utilizada apresentou sensibilidade à mudança de fotoperíodo. Conclusão: O modelo proposto e validado neste estudo pode ser usado em experimentos que tenham como objetivo avaliar as consequências das mudanças de exposição à luz.


Assuntos
Animais , Ratos , Ciclos de Atividade , Adaptação Fisiológica , Temperatura Corporal , Estimulação Luminosa , Fotoperíodo , Doença/etiologia , Iluminação/efeitos adversos , Estações do Ano , Estudos de Validação como Assunto
5.
Behav Brain Res ; 217(1): 16-20, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20888365

RESUMO

Studies have shown that an enriched environmental (EE) enhances hippocampal neurogenesis and dendritic branching in rodents, improving the performance in learning and memory task. Diabetes, however, is associated with memory deficits and decreasing in cell proliferation in the hippocampal dentate gyrus (DG), possibly related with higher glucocorticoid levels. Thus, our objective was to investigate the influence of EE on the memory deficits and cell proliferation of diabetic rats. For this, we reared rats for 2 months during early stages of life in standard environments (control rats) or EE. At adulthood, control and EE groups were divided and half of them induced to diabetes by a single injection of streptozotocin, 60 mg/kg, via i.p. Memory deficit was evaluated in these groups in the novel object-placement recognition task 11 days after diabetes induction. BrdU label cells were detected by immunohistochemistry after 3 days of administration to correlate cell proliferation in the DG area and performance in the memory task. Our results showed that EE decreased memory deficits in diabetic-induced rats (p < 0.05). Although cell proliferation in the DG was lower in the diabetic rats, enriched environment did not interfere in this parameter. These findings suggest that enriched environment is able to prevent or delay the development of memory deficits caused by diabetes in rats.


Assuntos
Diabetes Mellitus Experimental/psicologia , Meio Ambiente , Transtornos da Memória/prevenção & controle , Animais , Proliferação de Células , Giro Denteado/patologia , Diabetes Mellitus Experimental/patologia , Locomoção , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA