RESUMO
Exogenous enzymes are added to diets to improve nutrient utilization and feed efficiency. A study was conducted to evaluate the effects of dietary exogenous enzyme products with amylolytic (Amaize, Alltech) and proteolytic (Vegpro, Alltech) activity on performance, excretion of purine derivatives, and ruminal fermentation of dairy cows. A total of 24 Holstein cows, 4 of which were ruminally cannulated (161 ± 88 d in milk, 681 ± 96 body weight, and 35.2 ± 5.2 kg/d of milk yield), were blocked by milk yield, days in milk, and body weight, and then distributed in a replicated 4 × 4 Latin square design. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and the last 7 d were used for data collection. Treatments were as follows: (1) control (CON) with no feed additives, (2) amylolytic enzyme product added at 0.5 g/kg diet dry matter (DM; AML), (3) amylolytic enzyme product at 0.5 g/kg of diet DM and proteolytic enzyme product at 0.2 g/kg of diet DM (low level; APL), and (4) amylolytic enzyme products added at 0.5 g/kg diet DM and proteolytic enzyme product at 0.4 g/kg of diet DM (high level; APH). Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). Differences between treatments were analyzed by orthogonal contrasts: CON versus all enzyme groups (ENZ); AML versus APL+APH; and APL versus APH. Dry matter intake was not affected by treatments. Sorting index for feed particles with size <4 mm was lower for ENZ group than for CON. Total-tract apparent digestibility of DM and nutrients (organic matter, starch, neutral detergent fiber, crude protein, and ether extract) were similar between CON and ENZ. Starch digestibility was greater in cows fed APL and APH treatments (86.3%) compared with those in the AML group (83.6%). Neutral detergent fiber digestibility was greater in APH cows compared with those in the APL group (58.1 and 55.2%, respectively). Ruminal pH and NH3-N concentration were not affected by treatments. Molar percentage of propionate tended to be greater in cows fed ENZ treatments than in those fed CON. Molar percentage of propionate was greater in cows fed AML than those fed the blends of amylase and protease (19.2 and 18.5%, respectively). Purine derivative excretions in urine and milk were similar in cows fed ENZ and CON. Uric acid excretion tended to be greater in cows consuming APL and APH than in those in the AML group. Serum urea N concentration tended to be greater in cows fed ENZ than in those fed CON. Milk yield was greater in cows fed ENZ treatments compared with CON (32.0, 33.1, 33.1, and 33.3 kg/d for CON, AML, APL, and APH, respectively). Fat-corrected milk and lactose yields were higher when feeding ENZ. Feed efficiency tended to be greater in cows fed ENZ than in those fed CON. Feeding ENZ benefited cows' performance, whereas the effects on nutrient digestibility were more pronounced when the combination of amylase and protease was fed at the highest dose.
Assuntos
Doenças dos Bovinos , Leucemia Mieloide Aguda , Feminino , Bovinos , Animais , Lactação , Peptídeo Hidrolases/metabolismo , Propionatos/metabolismo , Fermentação , Detergentes/metabolismo , Digestão , Leite/metabolismo , Dieta/veterinária , Nutrientes , Amido/metabolismo , Peso Corporal , Amilases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/veterinária , Rúmen/metabolismo , Ração Animal/análise , Zea mays/metabolismo , Doenças dos Bovinos/metabolismoRESUMO
Two experiments were conducted to evaluate the effect of supplementation with two sources of non-protein nitrogen at different feeding times on the performance, ingestive behavior, and rumen metabolism of growing Nellore bulls during the dry season. Exp. 1: One hundred and twenty Nellore bulls, weighing 206 ± 39 kg of initial body weight (BW) and 12 months of age, were divided into 20 paddocks, and they were used in randomized block design in a 2 × 2 factorial arrangement to evaluate performance and ingestive behavior. Exp. 2: 12 rumen cannulated animals with 509 ± 59 BW, divided into 4 paddocks, were used in a triple Latin square 4 × 4 in a 2 × 2 factorial arrangement to evaluate metabolism. The factors were 2 non-protein nitrogen sources (urea or slow-release urea) and 2 feeding times (07:00 or 13:00 at 4 g/kg BW of supplement). There was no influence of non-protein sources, supplementation time, or their interaction on the grazing time or the trough time during daytime, nighttime, or total (P ≥ 0.16). There were no interactions or factor effects on ADG (P ≥ 0.45) or final body weight (P ≥ 0.39). There was an interaction between supplementation time and collection time (P < 0.01) on ruminal pH. Animals supplemented in the morning had greater total SCFA at 18 h after supplementation (P = 0.03). The supplementation time and the non-protein nitrogen sources did not alter the ingestive behavior or animal performance of young Nellore cattle.
Assuntos
Nitrogênio , Rúmen , Animais , Bovinos , Masculino , Ração Animal/análise , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Nitrogênio/metabolismo , Rúmen/metabolismo , Estações do Ano , Ureia/metabolismoRESUMO
BACKGROUND: Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulphate, CuSO4.5H2O) for a 10-d-experiment. RESULTS: Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, respectively. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3ß, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CONCLUSIONS: CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, respectively.
Assuntos
Galinhas , Cobre , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Cobre/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Glutationa Peroxidase , Glicogênio Sintase Quinase 3 beta , Lipídeos , Masculino , Mamíferos , Minerais , RNA Mensageiro , Superóxido Dismutase , Serina-Treonina Quinases TORRESUMO
We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia (Oreochromis niloticus). Two supplementation levels were tested: 1.0 g 100 g-1 (D1) and 4.0 g 100 g-1 (D4). A control diet, without the additive (D0, 0 g 100 g-1), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g-1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.
Assuntos
Ciclídeos , Estresse Oxidativo , Temperatura , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/administração & dosagem , Estramenópilas/químicaRESUMO
OBJECTIVE: A trial was conducted to investigate the effects of supplemental levels of Mn provided by organic and inorganic trace mineral supplements on growth, tissue mineralization, mineral balance, and antioxidant status of growing broiler chicks. METHODS: A total of 500 male chicks (8-d-old) were used in 10-day feeding trial, with 10 treatments and 10 replicates of 5 chicks per treatment. A 2×5 factorial design was used where supplemental Mn levels (0, 25, 50, 75, and 100 mg Mn/kg diet) were provided as MnSO4âH2O or MnPro. When Mn was supplied as MnPro, supplements of zinc, copper, iron, and selenium were supplied as organic minerals, whereas in MnSO4âH2O supplemented diets, inorganic salts were used as sources of other trace minerals. Performance data were fitted to a linearbroken line regression model to estimate the optimal supplemental Mn levels. RESULTS: Manganese supplementation improved body weight, average daily gain (ADG) and feed conversion ratio (FCR) compared with chicks fed diets not supplemented with Mn. Manganese in liver, breast muscle, and tibia were greatest at 50, 75, and 100 mg supplemental Mn/kg diet, respectively. Higher activities of glutathione peroxidase and superoxide dismutase (total-SOD) were found in both liver and breast muscle of chicks fed diets supplemented with inorganic minerals. In chicks fed MnSO4âH2O, ADG, FCR, Mn balance, and concentration in liver were optimized at 59.8, 74.3, 20.6, and 43.1 mg supplemental Mn/kg diet, respectively. In MnPro fed chicks, ADG, FCR, Mn balance, and concentration in liver and breast were optimized at 20.6, 38.0, 16.6, 33.5, and 62.3 mg supplemental Mn/kg, respectively. CONCLUSION: Lower levels of organic Mn were required by growing chicks for performance optimization compared to inorganic Mn. Based on the FCR, the ideal supplemental levels of organic and inorganic Mn in chick feeds were 38.0 and 74.3 mg Mn/kg diet, respectively.
RESUMO
The effect of increasing amounts (0%, 25%, 50%, 75%, and 100%) of dietary supplementation with an organic micromineral complex (Fe, Zn, Cu, Mn, and Se) on antioxidant defenses and mineral deposition in tissues of Nile tilapia juveniles was evaluated, where 100% supplementation represented the average adopted by the feed industry in Brazil. Fish (initial weight 23.93 ± 0.80 g) were fed until apparent satiation twice a day for 56 days. The maximum deposition of Fe and Zn in the hepatopancreas occurred in fish given approximately 50% supplementation, whereas the deposition of Mn and Se increased linearly with the inclusion of the complex. The activity of catalase and superoxide dismutase in the hepatopancreas decreased in fish fed the 50% dose, when compared to those not receiving mineral supplementation or those receiving higher doses. Glutathione peroxidase (GPx) activity in the hepatopancreas increased as the dietary Se concentration increased. However, the concentration of metallothionein in the hepatopancreas showed an inverse relationship to the increase in dietary supplementation of the organic mineral complex. There was no relationship between the doses of organic micromineral supplementation and the activities of GPx, reduced glutathione, non-protein thiols, or protein carbonylation. However, diets supplemented with 50% to 100% promoted greater GPx activity when compared to the 0% supplemented diet. Supplementation with intermediate doses of organic microminerals, approximately 50% of that used in commercial tilapia diets, promoted the homeostasis of metal metabolism, especially for Fe and Zn.
Assuntos
Ração Animal , Antioxidantes/metabolismo , Ciclídeos/fisiologia , Suplementos Nutricionais , Metalotioneína/metabolismo , Animais , Antioxidantes/química , Brasil , Catalase/metabolismo , Ciclídeos/metabolismo , Dieta , Glutationa , Glutationa Peroxidase/metabolismo , Hepatopâncreas/metabolismo , Ferro/química , Masculino , Metalotioneína/química , Minerais/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Zinco/químicaRESUMO
BACKGROUND: Selenium (Se) has been recognized as an essential micronutrient for nearly all forms of life. In recent decades, broiler responses to dietary Se supplemental levels and sources have received considerable attention. On environmental grounds, organic trace mineral utilization in practical broiler feeds has been defended due to its higher bioavailability. In such feeds, trace minerals are provided simultaneously in the same supplement as inorganic salts or organic chelates, a fact commonly ignored in assays conducted to validate organic trace mineral sources. The current assay aimed to investigate growth and biochemical responses, as well as Se retention of growing chicks fed diets supplemented with organic and inorganic Se levels and where the trace minerals (zinc, copper, manganese, and iron) were provided as organic chelates or inorganic salts according to Se source assessed. In so doing, a 2 × 5 factorial arrangement was used to investigate the effects of sodium selenite (SS) and selenium-yeast (SY) supplemented in feeds to provide the levels of 0, 0.08, 0.16, 0.24, and 0.32 mg Se/kg. RESULTS: Chicks fed selenium-yeast diets had body weight (BW), and average daily gain (ADG) maximized at 0.133 and 0.130 mg Se/kg, respectively. Both Se sources linearly increased (P < 0.05) the glutathione peroxidase (GSH-Px) activity in chick blood but higher values were observed in sodium selenite fed chicks (P < 0.05). Both Se sources influenced thyroid hormone serum concentrations (P < 0.05). Chicks fed SY exhibited greater retention of Se in the feathers (P < 0.05). Relative bioavailability of selenium yeast compared with SS for the Se content in carcass, feathers, total and Se retention were, 126, 116, 125 and 125%, respectively. SY supplementation resulted in lower liver Se concentration as Se supplementation increased (P < 0.05). CONCLUSIONS: Based on performance traits, the supplemental level of organic Se as SY in organic trace minerals supplement to support the maximal growth of broiler chicks is 0.133 mg Se/kg.
Assuntos
Ração Animal , Galinhas , Dieta/veterinária , Selênio/farmacologia , Oligoelementos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Selênio/administração & dosagem , Selênio/farmacocinética , Oligoelementos/administração & dosagemRESUMO
The objective of this survey was to identify what mycotoxins were present in ingredients used in diets offered to beef cattle in feedlots and their concentrations. The survey covered 30 Brazilian feedlots located in the five major beef-producing states. Samples of total mixed ration (TMR) and ingredients were collected and analyzed for mycotoxin using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Mycotoxin concentrations were further interpreted according to known species-specific sensitivities and normalized according to the principles of toxic equivalent factors (risk equivalent quantities - REQ) expressed in µg kg−1 of aflatoxin B1-equivalent. Forty percent of the visited feedlots had apparent fungi in TMR. However, only one feedlot (3%) used a mycotoxin adsorbent. On the other hand, diets with high contamination presented no apparent fungi. One hundred percent of TMR was contaminated. All samples presented at least one mycotoxin contamination, with 65.5% considered low contamination, 27.6% medium contamination, and 6.90% high contamination. The toxins identified in TMR were fumonisins (most frequently), trichothecenes A, trichothecenes B, fusaric acid, aflatoxins, and ergot (mean concentration values: 2,330, 104.3, 79.5, 105, 10.5, and 5.5 µg kg−1, respectively). According to the contamination of TMR samples per region, Mato Grosso do Sul state presented the highest contaminations. Peanut meal was the most contaminated ingredient. One hundred percent of TMR in Brazilian feedlot is contaminated. Fumonisins were the mycotoxin most frequent and at highest concentrations in TMR samples. Moreover, mycotoxin concentrations have a distinct pattern among ingredients, TMR, and feedlots (local).(AU)