RESUMO
Most mealybugs of the Pseudococcidae family are important pests of agriculture and ornamental gardens. Our aim was to perform a review and meta-analysis on 14 published scientific articles on the insecticidal activity of essential oils (EOs) against mealybug species of the Pseudococcidae family. Data on (1) species, genus, families, and plant parts from which the EO was extracted; (2) the main compounds of each EO; (3) the highest and lowest concentrations tested; and (4) the application method used for the toxicological studies was collected from each study. The metafor package (R software) was used to perform a three-level random effects meta-analysis. The families Lamiaceae, Rutaceae, Myrtaceae, Zingiberaceae and Euphorbiaceae and the genera Citrus, Cymbopogon, Syzygium, Cinnamomum and Jatropha were the most used among the studies. According to the results from the meta-analyses, 13 out of 24 genera analyzed were effective against mealybugs. All methods were effective, but fumigation and indirect contact were the most frequently used methodologies. The results obtained from the present review and meta-analysis could be used for the potential development of natural biopesticide formulations against mealybugs belonging to the Pseudococcidae family.
RESUMO
Hydraulic architecture was studied in shrub species differing in rooting depth in a cold desert in Southern Argentina. All species exhibited strong hydraulic segmentation between leaves, stems and roots with leaves being the most vulnerable part of the hydraulic pathway. Two types of safety margins describing the degree of conservation of the hydraulic integrity were used: the difference between minimum stem or leaf water potential (Ψ) and the Ψ at which stem or leaf hydraulic function was reduced by 50% (Ψ - Ψ50), and the difference between leaf and stem Ψ50. Leaf Ψ50 - stem Ψ50 increased with decreasing rooting depth. Large diurnal decreases in root-specific hydraulic conductivity suggested high root vulnerability to embolism across all species. Although stem Ψ50 became more negative with decreasing species-specific Ψsoil and minimum stem Ψ, leaf Ψ50 was independent of Ψ and minimum leaf Ψ. Species with embolism-resistant stems also had higher maximum stem hydraulic conductivity. Safety margins for stems were >2.1 MPa, whereas those for leaves were negative or only slightly positive. Leaves acted as safety valves to protect the integrity of the upstream hydraulic pathway, whereas embolism in lateral roots may help to decouple portions of the plant from the impact of drier soil layers.