Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889788

RESUMO

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Assuntos
Sulfeto de Hidrogênio , Poecilia , Animais , Sulfeto de Hidrogênio/metabolismo , Poecilia/genética , Poecilia/fisiologia , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiologia , Extremófilos/genética , Transcrição Gênica , México , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Brânquias/metabolismo
2.
Mol Biol Evol ; 37(9): 2706-2710, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658964

RESUMO

Due to the scope and impact of the COVID-19 pandemic there exists a strong desire to understand where the SARS-CoV-2 virus came from and how it jumped species boundaries to humans. Molecular evolutionary analyses can trace viral origins by establishing relatedness and divergence times of viruses and identifying past selective pressures. However, we must uphold rigorous standards of inference and interpretation on this topic because of the ramifications of being wrong. Here, we dispute the conclusions of Xia (2020. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense. Mol Biol Evol. doi:10.1093/molbev/masa095) that dogs are a likely intermediate host of a SARS-CoV-2 ancestor. We highlight major flaws in Xia's inference process and his analysis of CpG deficiencies, and conclude that there is no direct evidence for the role of dogs as intermediate hosts. Bats and pangolins currently have the greatest support as ancestral hosts of SARS-CoV-2, with the strong caveat that sampling of wildlife species for coronaviruses has been limited.


Assuntos
Alphacoronavirus/genética , Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Genoma Viral , Pandemias , Pneumonia Viral/epidemiologia , Vírus Reordenados/genética , Alphacoronavirus/classificação , Alphacoronavirus/patogenicidade , Animais , Betacoronavirus/classificação , Betacoronavirus/patogenicidade , Evolução Biológica , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Ilhas de CpG , Cães , Eutérios/virologia , Humanos , Evasão da Resposta Imune/genética , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Ligação Proteica , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Vírus Reordenados/classificação , Vírus Reordenados/patogenicidade , SARS-CoV-2 , Replicação Viral
3.
Genome Biol Evol ; 11(11): 3123-3143, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642474

RESUMO

Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change-even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.


Assuntos
Boidae/genética , Deriva Genética , Variação Genética , Seleção Genética/genética , Animais , Belize , Evolução Molecular , Genética Populacional , Genoma , Honduras , Ilhas , Fenótipo , Filogenia
4.
Mol Phylogenet Evol ; 127: 669-681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902574

RESUMO

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.


Assuntos
Crotalus/genética , Fluxo Gênico , Variação Genética , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , Crotalus/classificação , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , México , Filogenia , Filogeografia , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA