RESUMO
Raphidiopsis raciborskii is being considered an expanding, invasive species all over the world. It is a potentially toxin producer cyanobacterium and form blooms specially in (sub)tropical lakes, causing concern to public health. Thus, controlling such phenomena are of vital importance. To test the hypothesis that a tropical clone of Daphnia laevis is able to reduce the biomass of R. raciborskii, we performed a mesocosm experiment simulating a bloom of this cyanobacterium in field conditions and exposing it to ecologically relevant densities of daphniids. In addition, we tested the hypothesis that omnivorous fish would be able to exert a top-down effect on Daphnia, decreasing the effectiveness of this control. We used treatments with (10 and 20 Daphnia L-1) or without Daphnia and fish (3 per mesocosm). Daphnia was able to significantly reduce the biomass of R. raciborskii only at the highest density tested. Fish had low effect on Daphnia biomass, but it is suggested that nutrient recycling by fish might have contributed to the higher R. raciborskii biomass in fish treatments. This is the first evidence of Daphnia control over saxitoxin-producing cyanobacteria in a tropical ecosystem.
Assuntos
Cianobactérias , Cylindrospermopsis , Animais , Daphnia , Ecossistema , LagosRESUMO
Camorim is a small, eutrophic reservoir in Rio de Janeiro, Brazil, with a phytoplankton community dominated most of the year by the filamentous diatom Aulacoseira spp. and the toxic cyanobacterium Cylindrospermopsis raciborskii. As filamentous species can be a poor food for grazers, we hypothesize that phytoplankton from this reservoir would constrain cladoceran fitness due to nutritional limitation and/or toxicity when animals fed mixtures of cultured green algae and natural seston. Clones of different cladoceran species were exposed either to seston from Camorim reservoir sampled in different seasons or to a C. raciborskii strain (CYLCAM-2) isolated from the reservoir. In short-term assays, cladocerans were exposed to either 100% seston or mixtures of 50% seston added to green algae (200 µg C L-1), and their survivorship and somatic growth were measured for 4 days. In life table assays, neonates were exposed to the same seston treatments over 14 days and age at first reproduction, survivorship, fecundity, total offspring, and the intrinsic rate of natural increase (r) were assessed. In general, seston negatively affected cladoceran survivorship and fitness (r), but this response was seasonally and species specific. Stronger effects of CYLCAM-2 than those caused by seston on survivorship, somatic growth, and r were found for all cladoceran species, especially when the proportion of CYLCAM-2 was higher than 50% in relation to green algae in a fixed total food concentration. Our results suggest that both nutritional (C/P and morphology) and toxicity factors can act to impair cladoceran fitness and help explain the absence of cladocerans in Camorim reservoir.