Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(2): 827-838, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394154

RESUMO

The aim of the present study was to obtain an effective vehiculation system in which bacterial agents could maintain viability improving their removal capacity. Herein, we present a novel biohybrid membrane of polymeric nanofibers and free-living bacteria for the simultaneous removal of pollutants. In this system, bacteria are free within the pores between the nanofibers and adsorbed to the surface of the membranes. Association between bacteria and the membranes was performed through a self-formulated medium, and the presence of the bacteria in the polymeric matrix was evidenced through atomic force microscopy (AFM). Biohybrid membranes associated with the remediation agents Bacillus toyonensis SFC 500-1E and Acinetobacter guillouiae SFC 500-1A promoted a reduction of up to 2.5 mg/L of hexavalent chromium and up to 200 mg/L of phenol after 24 h of treatment in synthetic medium containing the contaminants. Similarly, more than 46% of the hexavalent chromium and all of the phenol content were removed after treatment of a tannery effluent with initial concentrations of 7 mg/L of Cr(VI) and 305 mg/L of phenol. Counts of the remediation agents from the membranes were always above 1.107 CFU/g, also in the reutilization assays performed without reinoculation. Biohybrid membranes were hydrolysis-resistant, reusable, and effective in the simultaneous removal of contaminants for more than 5 cycles. Viability of the microorganisms was maintained after long-term storage of the membranes at 4 °C, without the use of microbiological media or the addition of cryoprotectants. Graphical abstract KEY POINTS: • Polymeric membranes were effectively associated with the SFC 500-1 remediation consortium • Biohybrid membranes removed hexavalent chromium and phenol from different matrices • Removal of contaminants was achieved in many successive cycles without reinoculation.


Assuntos
Cromo , Fenol , Acinetobacter , Bacillus , Bactérias , Biodegradação Ambiental , Fenóis
2.
Genomics ; 112(6): 4525-4535, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781202

RESUMO

Bacillus sp. SFC 500-1E is used for the effective treatment of tannery effluents since it consistently removes hexavalent chromium from diverse contaminated matrices. The aim of the present study was to complete identification of the strain through a polyphasic characterization, which included the pattern of carbohydrate utilization, fatty acids profile, multilocus sequence analysis, multiplex PCR profile and the analysis of the complete genome sequence. Morpho-physiological and biochemical characterization results and analysis of 16S rRNA sequences were not conclusive. The strain formed a monophyletic clade with B. toyonensis BCT-7112, B. thuringiensis MC28 and B. cereus Rock 1-3. However, genomic comparisons with type strains of B. cereus and B. thuringiensis showed that the isolated belonged to a different species. Results of this study highlight the relevance of the genome sequence of this strain, identified as Bacillus toyonensis SFC 500-1E, to expand knowledge of its bioremediation potential and to explore unknown decontamination activities.


Assuntos
Bacillus/classificação , Bacillus/citologia , Bacillus/genética , Bacillus/fisiologia , Bacillus cereus/classificação , Biodegradação Ambiental , Genoma Bacteriano , Genômica , Filogenia , RNA Ribossômico 16S/genética
3.
Ecotoxicology ; 29(7): 973-986, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556791

RESUMO

Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.


Assuntos
Bufo arenarum , Resíduos Industriais/efeitos adversos , Lactuca/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Águas Residuárias/análise , Animais , Argentina , Sequenciamento de Nucleotídeos em Larga Escala , Rios/química , Rios/microbiologia , Curtume , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA