Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41059-41068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842777

RESUMO

Lead (Pb) can be deposited in aquatic environments that are especially subject to pollution due to wastewater and sewage disposal. This study aimed to evaluate the tolerance of Echinodorus grandiflorus (Cham. & Schltr.) Micheli to Pb and changes in growth, gas exchange, and leaf anatomy. Experiments were conducted with E. grandiflorus plants exposed to the following Pb concentrations in nutrient solution: [0; 0.75; 1.5; 3.0 and 9.0 µM Pb (NO 3)2] in a greenhouse for 60 days. At the end of the experiment, the lead concentration, growth, leaf gas exchange, and changes in leaf anatomy were evaluated. There was no mortality of E. grandiflorus plants, and they accumulated higher concentrations of Pb proportional to the concentration of the pollutant in the solution. Pb did not cause significant changes in growth, stomatal conductance, transpiration, and Ci/Ca rate but reduced the photosynthesis in E. grandiflorus. The leaf anatomy showed significant changes in the presence of Pb, reducing the epidermis and chlorophyll parenchyma. E. grandiflorus demonstrated tolerance to Pb, surviving and growing under contamination; however, it negatively modified its leaf anatomy and photosynthesis in the presence of the metal.


Assuntos
Chumbo , Folhas de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alismataceae/anatomia & histologia
2.
J Plant Res ; 136(5): 665-678, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219754

RESUMO

Precipitation is an important climatic element that defines the hydrological regime, and its seasonal variation produces annual dry and wet periods in some areas. This seasonality changes wetland environments and leverages the growth dynamics of macrophytes present, including Typha domingensis Pers. This study aimed to evaluate the influence of seasonal variation on the growth, anatomy and ecophysiology of T. domingensis in a natural wetland. Biometric, anatomical and ecophysiological traits of T. domingensis were evaluated over one year at four-month intervals. Reductions in photosynthesis were evidenced at the end of the wet periods and during the dry periods, and these reductions were associated with thinner palisade parenchymas. Increased stomatal indexes and densities as well as thinner epidermis observed at the beginning dry periods can be associated with higher transpiration rates during this period. The plants maintained their water contents during the dry periods, which may be related to the storage of water in leaf trabecular parenchyma, as this is the first time that results indicate the function of this tissue as a seasonal aquiferous parenchyma. In addition, increasing proportions of aerenchymas were evident during the wet periods, which may be related to a compensation mechanism for soil waterlogging. Therefore, the growth, anatomy and ecophysiology of T. domingensis plants change throughout the year to adjust to both the dry and wet periods, providing conditions for the survival of the plants and modulating population growth.


Assuntos
Typhaceae , Estações do Ano , Crescimento Demográfico , Áreas Alagadas , Fotossíntese
3.
Environ Sci Pollut Res Int ; 29(13): 19878-19889, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35080729

RESUMO

Typha domingensis Pers. is a plant that grows in marshy environments, where cadmium (Cd) accumulates. The root is the first organ that comes into contact with the metal. The aim of this study was to evaluate the effect of Cd on the roots of T. domingensis. The experiment was conducted in a greenhouse using different Cd concentrations: (1) 0 µM (control), (2) 10 µM, and (3) 50 µM, with 10 replicates for 90 days. The plants were placed in plastic containers containing 5 L of nutrient solution modified with the different Cd concentrations. At the end of the experiment, the roots were measured, sampled, fixed, and subjected to usual plant microtechniques. The slides were observed and photographed under light microscopy and analyzed in ImageJ software. To measure Cd absorption, atomic-absorption spectrometry was used. The data were subjected to analysis of variance and comparison of means by the Scott-Knott test at P < 0.05. When exposed to 50 µM of Cd, the roots accumulated 99.35% of the Cd. At this concentration, there was a reduction in the exodermis but there was an increase in the diameter of the cortical cells and in the proportion of aerenchyma in the cortex. There was an increase in the root cap, which guaranteed the protection of the primary meristems. Therefore, T. domingensis adjusts its root anatomy improving the Cd tolerance and shows potential for phytoremediation purposes.


Assuntos
Typhaceae , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Plantas , Áreas Alagadas
4.
Protoplasma ; 254(6): 2117-2126, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28343257

RESUMO

Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd2+) contamination. The aim of this study was to evaluate the Cd2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 µM of Cd2+. Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd2+ level (10 µM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 µM of Cd2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd2+-exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd2+ levels. Furthermore, older leaves showed higher Cd2+ content when compared to the younger ones, preventing the Cd2+ toxicity to these leaves. Thus, low Cd2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.


Assuntos
Anacardiaceae/citologia , Cádmio/farmacologia , Meristema/citologia , Folhas de Planta/citologia , Poluentes do Solo/farmacologia , Anacardiaceae/efeitos dos fármacos , Anacardiaceae/crescimento & desenvolvimento , Anacardiaceae/metabolismo , Cádmio/metabolismo , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA