Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 123: 558-566, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30622080

RESUMO

The Paso del Norte region is characterized by its dynamic industries and active agriculture. Throughout the years, urban and agricultural soils from this region have been exposed to xenobiotics, heavy metals, and excess of hydrocarbons. In this study, samples of urban [domestic workshops (DW)] and agricultural-intended (AI) soils from different sites of Ciudad Juárez, Mexico were evaluated for their fertility, element content, and microbial diversity. Chemical analyses showed that nitrites, nitrates, P, K, Mg, and Mn were predominantly higher in AI soils, compared to DW soils (p ≤ 0.05). The composition of soil microbial communities showed that Proteobacteria phylum was the most abundant in both soils (67%, p ≤ 0.05). In AI soils, Paracoccus denitrificans was reduced (p ≤ 0.05), concurring with an increment in nitrates, while the content of nitrogen was negatively correlated with the rhizobium group (r2 = -0.65, p ≤ 0.05). In DW soils, the Firmicutes phylum represented up to ~25%, and the relative abundance of Proteobacteria strongly correlated with a higher Cu content (r2 = 0.99, p ≤ 0.0001). The monotypic genus Sulfuricurvum was found only in oil-contaminated soil samples. Finally, all samples showed the presence of the recently created phylum Candidatus saccharibacteria. These results describe the productivity parameters of AI soils and its correlation to the microbial diversity, which are very important to understand and potentiate the productivity of soils. The data also suggest that soils impacted with hydrocarbons and metal(oid)s allow the reproduction of microorganisms with the potential to alleviate contaminated sites.


Assuntos
Microbiota , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Agricultura , Bactérias/classificação , Poluição Ambiental , Hidrocarbonetos/toxicidade , Metagenômica , Metais Pesados/toxicidade , México , Nitrogênio/análise , Análise Espectral
2.
Environ Pollut ; 243(Pt A): 703-712, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30228067

RESUMO

Bulk Cu compounds such as Cu(OH)2 are extensively used as pesticides in agriculture. Recent investigations suggest that Cu-based nanomaterials can replace bulk materials reducing the environmental impacts of Cu. In this study, stress responses of alfalfa (Medicago sativa L.) seedlings to Cu(OH)2 nanoparticle or compounds were evaluated. Seeds were immersed in suspension/solutions of a Cu(OH)2 nanoform, bulk Cu(OH)2, CuSO4, and Cu(NO3)2 at 25 and 75 mg/L. Six days later, the germination, seedling growth, and the physiological and biochemical responses of sprouts were evaluated. All Cu treatments significantly reduced root elongation (average = 63%). The ionic compounds at 25 and 75 mg/L caused a reduction in all elements analyzed (Ca, K, Mg, P, Zn, and Mn), excepting for S, Fe and Mo. The bulk-Cu(OH)2 treatment reduced K (48%) and P (52%) at 75 mg/L, but increased Zn at 25 (18%) and 75 (21%) mg/L. The nano-Cu(OH)2 reduced K (46%) and P (48%) at 75 mg/L, and also P (37%) at 25 mg/L, compared with control. Confocal microscopy images showed that all Cu compounds, at 75 mg/L, significantly reduced nitric oxide, concurring with the reduction in root growth. Nano Cu(OH)2 at 25 mg/L upregulated the expression of the Cu/Zn superoxide dismutase gene (1.92-fold), while ionic treatments at 75 mg/L upregulated (∼10-fold) metallothionein (MT) transcripts. Results demonstrated that nano and bulk Cu(OH)2 compounds caused less physiological impairments in comparison to the ionic ones in alfalfa seedlings.


Assuntos
Cobre/toxicidade , Germinação/efeitos dos fármacos , Hidróxidos/toxicidade , Medicago sativa/efeitos dos fármacos , Praguicidas/toxicidade , Plântula/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Óxido Nítrico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
3.
Plant Physiol Biochem ; 84: 277-285, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25439500

RESUMO

The effects of nCeO2 on food quality are not well known yet. This research was performed to determine the impact of nCeO2 on radish (Raphanus sativus L.). Plants were cultivated to full maturity in potting soil treated with nCeO2 at concentrations of 0, 62.5, 125, 250, and 500 mg/kg. Germination, growth, photosynthesis, ionome, and antioxidants were evaluated at different growth stages. Results showed that at 500 mg/kg, nCeO2 significantly retarded seed germination but did not reduce the number of germinated seeds. None of the treatments affected gas exchange, photosynthesis, growth, phenols, flavonoids, and nutrients' accumulation in tubers and leaves of adult plants. However, tubers' antioxidant capacity, expressed as FRAP, ABTS(•-) and DPPH, increased by 30%, 32%, and 85%, respectively, in plants treated with 250 mg nCeO2kg(-1) soil. In addition, cerium accumulation in tubers of plants treated with 250 and 500 mg/kg reached 72 and 142 mg/kg d wt, respectively. This suggests that nCeO2 could improve the radical scavenging potency of radish but it might introduce nCeO2 into the food chain with unknown consequences.


Assuntos
Antioxidantes/metabolismo , Cério/química , Cério/farmacologia , Nanopartículas/química , Raphanus/efeitos dos fármacos , Raphanus/metabolismo , Tubérculos/efeitos dos fármacos , Tubérculos/metabolismo
4.
Environ Sci Technol ; 45(3): 1082-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21174467

RESUMO

This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg(-1), respectively, were watered every other day for 30 days with a KN solution at 250 µM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogeneous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems.


Assuntos
Catalase/metabolismo , Cromo/metabolismo , Fabaceae/metabolismo , Cinetina/metabolismo , Peroxidases/metabolismo , Poluentes do Solo/metabolismo , Ascorbato Peroxidases , Biodegradação Ambiental , Cromo/química , Fabaceae/química , Fabaceae/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo/química , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA