RESUMO
Gold nanoparticles (AuNPs) are attractive structures for biosensing, most due to different properties at nanoscale and biocompatibility. Localized surface plasmon resonance (LSPR) is one of these properties; LSPR enable the electromagnetic field enhancement closer to metallic surface, which allows surface-enhanced spectroscopies, like surface enhanced fluorescence (SEF). In this study, an immuno-biosensor based on gold nanorods (AuNRs) and SEF was constructed for simple and fast analysis to detect albumin antibody (anti-BSA) using antigen-antibody (anti-BSA/BSA) interaction as the biorecognition model. AuNRs were presented in two distinct configurations, in suspension (S-AuNRs) and adsorbed on glass slides (AuNRs-chip), and the detection was performed through an extrinsic method, wherein the SEF signal of a reporter molecule (IR-820 cyanine-type dye) was monitored. The analyte detection was evidenced by SEF mapping, where the average signal in the presence of anti-BSA was three times more intense than for the assay in the absence of analyte. A digital protocol was proposed to simplify the spectroscopic data analysis and reduce the intensity variability; in this protocol the number of positive events in the presence of anti-BSA is much larger (around two times) compared to the absence of analyte. The AuNRs based SEF immuno-biosensor allowed an efficient and simple analysis with specific biorecognition and may contribute as an efficient spectroscopy platform for immuno-biosensing.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , Albuminas , Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Ressonância de Plasmônio de Superfície/métodosRESUMO
Biosensors presenting high sensitivity for the detection of biomolecules are very promising for diseases diagnosis. Nowadays, there is a need for the development of biosensors with fast, trustworthy diagnosis and mostly with low cost, mainly for applications in developing countries. Label-free plasmonic biosensors are good candidates to reach out all these characteristics due to the possibility of spectral tunability, fast sensor response, real-time detection, strong enhancement of the local electric field and excellent adaptability to assemble different nanobiotechnology architectures. In this paper, two different configurations for LSPR based biosensor were developed by using solution-phase gold nanorods (S-P-AuNRs) and AuNRs-chip. The LSPR sensitivities were evaluated by monitoring shifts in the longitudinal plasmon band with changes in the refractive index of the medium surrounding the nanoparticles. AuNRs-chip presented higher sensitivity of 297â¯nm RIU-1 (refractive index unit) against 196â¯nm RIU-1 for S-P-AuNRs. Figure of merit (FOM) for AuNRs-chip and S-P-AuNRs were 3.0 and 2.2 RIU-1, respectively. This result was assigned to the coupling of the lower energy longitudinal LSPR mode of propagation for AuNRs-chip among nearby nanoparticles in the film. In addition, an improvement of at least 18% in sensitivity was obtained comparing to others AuNRs based assay with similar aspect ratio. FOM is more appropriate to compare different approaches, in this case, the proposed biosensor reached improvements of at least 114%, presenting higher values even when compared to AuNRs of higher aspect ratio. As a proof of concept, AuNRs surface was chemically modified using mercaptoundecanoic acid followed activation with ethylcarbodiimide and N-hidroxysuccinimide to allow the interaction between Bovine Serum Albumin (BSA) antibody and correspondent antigen. Both configurations studied resulted in efficient plasmonic biosensors, presenting high sensitivity for changes in the refractive index and for surface binding with anti-BSA.