Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 244: 103931, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861479

RESUMO

Reactive transport models have proven abilities to simulate the quantity and quality of drainage from mine waste rock. Tracer experiments indicate the presence of fast and slow flow regimes in many heterogeneous waste-rock piles. Although multidomain models have been developed specifically for systems with such distinctive hydrodynamics, there have been limited applications of multidomain reactive transport models to simulate composite drainage chemistries from waste-rock piles to date. This work evaluated the ability of dual-domain multicomponent reactive transport models (DDMRTMs) to reproduce breakthrough curves of conservative (chloride) and reactive (molybdenum) solutes observed at a well-characterized experimental waste-rock pile at the Antamina Mine, Peru. We found that the DDMRTM simulations quantitatively matched eight-year-long records of conservative transport through the waste-rock pile when parameterized mainly with field-measured properties obtained from the site and limited calibration. The DDMRTM model also provided a reasonable match to field observations of the reactive solute. The limited calibrated parameters are physically realistic, corroborating the ability of these multidomain models to reproduce the complex reactive-transport processes governing polluted rock drainage from large-scale waste-rock piles.


Assuntos
Mineração , Modelos Teóricos , Peru
2.
J Contam Hydrol ; 214: 65-74, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884544

RESUMO

Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization.


Assuntos
Mineração , Modelos Teóricos , Movimentos da Água , Difusão , Peru , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA