Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 428: 113832, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35259414

RESUMO

Dysregulation of GABAergic neurotransmission has long been implicated in several psychiatric disorders, including schizophrenia, depression, and anxiety disorders. Alpha 5 subunit-containing GABAA receptors (α5-GABAAR), which are expressed mainly by pyramidal neurons in the hippocampus, have been proposed as a potential target to treat these psychiatric disorders. Here, we evaluated the effects produced by GL-II-73 and SH-053-2'F-R-CH3 (1, 5, and 10 mg/kg), two positive allosteric modulators of α5-GABAAR in behavioral tests sensitive to drugs with anxiolytic, antidepressant, and antipsychotic properties in male and female C57BL/6 mice. In both males and females, GL-II-73 produced an anxiolytic-like effect in the elevated plus-maze (EPM) and novelty-suppressed feeding and a rapid and sustained antidepressant-like effect in the forced swim test. GL-II-73 also induced antipsychotic-like effects in males indicated by attenuating MK-801-induced hyperlocomotion and prepulse inhibition (PPI) disruption. However, GL-II-73 per se increased locomotor activity and impaired fear memory extinction in males and females and PPI in males. On the other hand, SH-053-2'F-R-CH3 induced anxiolytic-like effects in the EPM and facilitated fear memory extinction in males. Contrary to GL-II-73, SH-053-2'F-R-CH3 attenuated MK-801-induced hyperlocomotion and PPI disruption in females but not in males. Neither of these drugs induced rewarding effects or impaired motor coordination. These findings suggest that GL-II-73 and SH-053-2'F-R-CH3 cause distinct sex-dependent behavioral responses and support continued preclinical research on the potential of positive allosteric modulators of α5-GABAAR for the treatment of psychiatric disorders.


Assuntos
Ansiolíticos , Antipsicóticos , Animais , Ansiolíticos/farmacologia , Benzodiazepinas/farmacologia , Maleato de Dizocilpina , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A , Ácido gama-Aminobutírico
2.
Neurotox Res ; 38(4): 1049-1060, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32929685

RESUMO

Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.


Assuntos
Doxiciclina/uso terapêutico , Inibição Pré-Pulso/efeitos dos fármacos , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Anfetamina/metabolismo , Anfetamina/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apomorfina/toxicidade , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Doxiciclina/metabolismo , Doxiciclina/farmacologia , Previsões , Masculino , Camundongos , Inibição Pré-Pulso/fisiologia , Receptores Dopaminérgicos/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo
3.
Psychopharmacology (Berl) ; 231(4): 663-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24101156

RESUMO

RATIONALE: Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI). OBJECTIVES: The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction. METHODS: Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment. RESULTS: Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect. CONCLUSIONS: This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.


Assuntos
GMP Cíclico/metabolismo , Inibição Psicológica , Óxido Nítrico/metabolismo , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia , Estimulação Acústica , Anfetamina/farmacologia , Animais , AMP Cíclico/metabolismo , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Testes Neuropsicológicos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Purinonas/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA