Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049488

RESUMO

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Endocitose , Células HeLa , Humanos , Nanopartículas/ultraestrutura
2.
Fundam Clin Pharmacol ; 28(6): 593-607, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24750474

RESUMO

Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.


Assuntos
AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Técnicas Biossensoriais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA