Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 136: 487-496, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28528302

RESUMO

Adenosine receptors are considered as potential targets for drug development against several diseases. The discovery of subtype 2B adenosine receptors role in erythrocyte sickling process proved its importance to neglected diseases such as sickle cell anemia, which affects approximately 29.000 people around the world, but whose treatment is restricted to just one FDA approved drug (hydroxyurea). In order to widen the therapeutic arsenal available to treat sickle cell anemia patients, it is imperative to identify new lead compounds that modify the sickling course and not just its symptoms. In order to accomplish this goal, ligand-based pharmacophore models that differentiate true ligands from decoys and enlighten the structure-activity relationship of known RA2B antagonists were employed screen the lead-like subset of the ZINC database. Following a chemical diversity analysis, 18 compounds were selected for biological evaluation. Among them, one molecule Z1139491704 (pEC50 = 7.77 ± 0.17) has shown better anti-sickling activity than MRS1754 (pEC50 = 7.63 ± 0.12), a commercial RA2B antagonist. Moreover, these compounds exhibited no cytotoxic effect at low micromolar range on mammalian cells. In conclusion, the sound development of validated ligand-based pharmacophore models proved essential to identify novel chemical scaffolds that might be useful to develop anti-sickling drugs.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Anemia Falciforme/tratamento farmacológico , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Ligantes , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Enzyme Inhib Med Chem ; 29(4): 590-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24090420

RESUMO

Adenosine receptors have been considered as potential targets for drug development, but one of the main obstacles to this goal is to selectively inhibit one receptor subtype over the others. This subject is particularly crucial for adenosine A2b receptor antagonists (AdoRA2B). The structure­activity relationships of xanthine derivatives which are AdoRA2B have been comprehensively investigated, but the steric and electronic requirements of deazaxanthine AdoRA2B have not been described from a quantitative standpoint of view. Herein we report our efforts to shorten this knowledge gap through 2D-QSAR (HQSAR) and 3D-QSAR (CoMFA) approaches. The good statistical quality (HQSAR--r(2) = 0.85, q(2)(LOO) = 0.77; CoMFA ­ r(2) = 0.86, q(2) = 0.70) and predictive ability (r(2) = (pred1) = 0.78, r(2)(pred2) = 0.78 and r(2) = (pred1) = 0.70, r(2) = (pred2) = 0.70,respectively) of the models, along with the information provided by contribution and contour maps hints their usefulness to the design of more potent 9-deazaxanthine derivatives.


Assuntos
Desenho de Fármacos , Receptor A2B de Adenosina/metabolismo , Xantinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Xantinas/síntese química , Xantinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA