Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Free Radic Biol Med ; 160: 356-367, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32858158

RESUMO

Protein insolubilization, cross-linking and aggregation are considered critical to the development of lens opacity in cataract. However, the information about the presence of cross-links other than disulfides in cataractous lenses is limited. A potential role for cross-links produced from tryptophanyl radicals in cataract development is suggested by the abundance of the UV light-sensitive Trp residues in crystallin proteins. Here we developed a LC-MS/MS approach to examine the presence of Trp-Trp, Trp-Tyr and Tyr-Tyr cross-links and of peptides containing Trp-2H (-2.0156 Da) in the lens of three patients diagnosed with advanced nuclear cataract. In the proteins of two of the lenses, we characterized intermolecular cross-links between ßB2-Tyr153-Tyr104-ßA3 and ßB2-Trp150-Tyr139-ßS. An additional intermolecular cross-link (ßB2-Tyr61-Trp200-ßB3) was present in the lens of the oldest patient. In the proteins of all three lenses, we characterized two intramolecular Trp-Trp cross-links (Trp123-Trp126 in ßB1 and Trp81-Trp84 in ßB2) and six peptides containing Trp -2H residues, which indicate the presence of additional Trp-Trp cross-links. Relevantly, we showed that similar cross-links and peptides with modified Trp-2H residues are produced in a time-dependent manner in bovine ß-crystallin irradiated with a solar simulator. Therefore, different crystallin proteins cross-linked by crystalline-derived tryptophanyl and tyrosyl radicals are present in advanced nuclear cataract lenses and similar protein modifications can be promoted by solar irradiation even in the absence of photosensitizers. Overall, the results indicate that a role for Trp-Tyr and Trp-Trp cross-links in the development of human cataract is possible and deserves further investigation.


Assuntos
Catarata , Cristalinas , Cristalino , Animais , Bovinos , Cromatografia Líquida , Cristalinas/genética , Humanos , Espectrometria de Massas em Tandem
2.
J Biol Chem ; 294(38): 14055-14067, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366734

RESUMO

2-Cys peroxiredoxins (Prxs) rapidly reduce H2O2, thereby acting as antioxidants and also as sensors and transmitters of H2O2 signals in cells. Interestingly, eukaryotic 2-Cys Prxs lose their peroxidase activity at high H2O2 levels. Under these conditions, H2O2 oxidizes the sulfenic acid derivative of the Prx peroxidatic Cys (CPSOH) to the sulfinate (CPSO2-) and sulfonated (CPSO3-) forms, redirecting the CPSOH intermediate from the catalytic cycle to the hyperoxidation/inactivation pathway. The susceptibility of 2-Cys Prxs to hyperoxidation varies greatly and depends on structural features that affect the lifetime of the CPSOH intermediate. Among the human Prxs, Prx1 has an intermediate susceptibility to H2O2 and was selected here to investigate the effect of a physiological concentration of HCO3-/CO2 (25 mm) on its hyperoxidation. Immunoblotting and kinetic and MS/MS experiments revealed that HCO3-/CO2 increases Prx1 hyperoxidation and inactivation both in the presence of excess H2O2 and during enzymatic (NADPH/thioredoxin reductase/thioredoxin) and chemical (DTT) turnover. We hypothesized that the stimulating effect of HCO3-/CO2 was due to HCO4-, a peroxide present in equilibrated solutions of H2O2 and HCO3-/CO2 Indeed, additional experiments and calculations uncovered that HCO4- oxidizes CPSOH to CPSO2- with a second-order rate constant 2 orders of magnitude higher than that of H2O2 ((1.5 ± 0.1) × 105 and (2.9 ± 0.2) × 103 m-1·s-1, respectively) and that HCO4- is 250 times more efficient than H2O2 at inactivating 1% Prx1 per turnover. The fact that the biologically ubiquitous HCO3-/CO2 pair stimulates Prx1 hyperoxidation and inactivation bears relevance to Prx1 functions beyond its antioxidant activity.


Assuntos
Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Antioxidantes/química , Antioxidantes/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálise , Cisteína/química , Cisteína/metabolismo , Humanos , Cinética , NADP/química , NADP/metabolismo , Oxirredução , Peróxidos/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
São Paulo; s.n; s.n; 2016. 122 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-847512

RESUMO

Apesar de extensa investigação das modificações oxidativas irreversíveis sofridas pelas proteínas in vitro e in vivo, os produtos formados pela oxidação de resíduos de triptofano ainda permanecem apenas parcialmente conhecidos. Recentemente, nosso grupo caracterizou uma ligação cruzada de ditriptofano produzida pela recombinação de radicais hSOD1-triptofanila gerados pelo ataque do radical carbonato produzido durante a atividade peroxidásica da enzima superóxido dismutase humana (hSOD1). Neste trabalho, examinamos se a ligação ditriptofano pode ser formada em outras proteínas, além da hSOD1 e por outros oxidantes, além do radical carbonato. A lisozima da clara do ovo e a beta cristalino bovina foram utilizadas como alvos de oxidação. A lisozima foi utilizada por ser uma enzima pequena (129 aminoácidos) e de estrutura bem conhecida, contendo seis resíduos de Trp. Os resultados mostraram que o radical carbonato, gerado enzimatica ou fotoliticamente, promove a oxidação, dimerização e inativação da lisozima. Os principais produtos de oxidação caracterizados por análise de nano-ESI-Q-TOF-MS/MS foram hidroxi-triptofano e N-formilquinurenina juntamente com um dímero de lisozima (lisozima-Trp28-Trp28-lisozima) e um hetero dímero lisozima-hSOD1 (lisozima-Trp28-Trp32-hSOD1), ambos ligados por uma ligação ditriptofano. Também demonstramos que a irradiação da lisozima com luz UVC leva à formação do dímero lisozima-Trp28-Trp28-lisozima. Em consequência, resolvemos tratar a beta cristalino bovina com radical carbonato gerado fotoliticamente ou com luz UVC, e a proteína também sofreu oxidação, dimerização e agregação. Os principais produtos de oxidação caracterizados por nano-ESI-Q-TOF-MS/MS foram hidroxi-triptofano, N-formilquinurenina, DOPA e um dímero de beta cristalino (ßB2-Trp151-Trp151-ßB2). A irradiação com luz UVC também levou à formação de um dímero intra-cadeia, caracterizado como ßA2-Trp78-Trp81. Quando a beta cristalino foi irradiada com um simulador de luz solar (UVA e UVB) também foi possível observar um dímero, caracterizado como ßA2-Trp150-Trp150-ßA2. A presença de produtos de oxidação de resíduos de Trp, dentre eles a ligação cruzada ditritpofano, também foi avaliada in vivo, utilizando o cristalino de pacientes que foram submetidos a cirurgia para remoção de catarata. Beta, alfa e gama cristalino foram as principais proteínas identificadas nas frações solúvel e insolúvel do cristalino. A principal modificação pós-traducionais identificada foi deamidação. Um alto conteúdo de resíduos de metionina e triptofano oxidados foram identificados nas proteínas presentes na fração insolúvel. Os principais produtos de oxidação de Trp identificados por nano-ESI-Q-TOF-MS/MS foram quinurenina e N-formilquinurenina. A presença de dímeros covalentes no cristalino com catarata foi confirmada por análises de massas. A completa caracterização desses dímeros (ßB1-Trp127-Trp127-ßB1 e ßB1-Trp193-Trp193-ßB1) confirmou que as cadeias polipeptídicas foram ligadas por uma ligação ditriptofano. Em síntese, nossos dados demonstraram que o radical carbonato e a luz UV podem produzir dímeros de ditriptofano em diferentes proteínas. Também, a presença da ligação cruzada de ditriptofano in vivo (catarata humana) foi pela primeira vez detectada


Despite extensive investigation of irreversible oxidative modifications suffered by proteins in vitro and in vivo, the products formed by oxidation of tryptophan residues remain partially characterized. Our group recently described a ditryptophan cross-link produced by recombination of hSOD1-tryptophanyl radicals generated by attack of the carbonate radical produced during the peroxidase activity of the human superoxide dismutase (hSOD1) enzyme. Here, we examine whether the ditryptophan cross-link can be produced in others proteins besides the hSOD1 and by other oxidants, in addition to the carbonate radical. The egg white lysozyme and bovine beta crystalline were used as targets. Lysozyme was used because it is a small enzyme (129 amino acids) with a well-known structure, containing six Trp residues. The results showed that the carbonate radical, generated enzymatically or photolytically, promotes lysozyme oxidation, inactivation and dimerization. The major oxidation products characterized by nano-ESI-Q-TOF-MS/MS analysis were hydroxy-tryptophan and N-formylkynurenine together with a dimer of lysozyme (lysozyme-Trp28-Trp28-lysozyme) and a hetero dimer hSOD1-lysozyme (lysozyme-Trp28-Trp32-hSOD1), both bound by a ditryptophan cross-link. Also, it was demonstrated that lysozyme irradiation with UVC light leads to the formation of the dimer lysozyme-Trp28-Trp28-lysozyme. In view of these results, we decided to treat beta crystalline bovine with photolytically generated carbonate radical and UVC. Beta crystalline also suffered oxidation, dimerization and aggregation. The major oxidation products characterized were hydroxy-tryptophan, N-formylkynurenine, DOPA and a beta crystalline dimer (ßB2-Trp151-Trp151-ßB2) by nano-ESI-Q-TOF-MS/MS. Irradiation with UVC light also led to the formation of an intra-chain dimer, which was characterized as ßA2-Trp78-Trp81. When beta crystalline was irradiated with a solar simulator (UVA and UVB), it was also possible to observe a dimer which was characterized as ßA2-Trp150-Trp150-ßA2. The presence of oxidized tryptophan products, including the ditryptophan cross-link, was also evaluated in vivo in the lenses of patients submitted to cataract removal. Beta, alpha and gamma crystalline were the main proteins identified in soluble and insoluble fractions of the lenses. The main post translational modification identified was deamidation. A high content of oxidized methionine and tryptophan residues were identified in proteins present in the insoluble fraction. The main tryptophan oxidation products identified by nano-ESI-Q-TOF-MS/MS were kynurenine and N-formylkynurenine. The presence of covalent dimers in the lenses with cataract was demonstrated by mass analysis. Full MS/MS characterization of the dimers ßB1-Trp127-Trp127-ßB1 and ßB1-Trp193-Trp193-ßB1 confirmed that they were linked by a ditryptophan bond. In summary, our data demonstrate that the carbonate radical and UV light can produce ditryptophan dimers in different proteins. Also, the presence of the ditryptophan cross-link was first detected in vivo (human cataract)


Assuntos
Triptofano/metabolismo , Catarata/complicações , Cristalino/citologia , Muramidase/análise , Oxidação/métodos , Superóxido Dismutase , Raios Ultravioleta/classificação , Resíduos
4.
Arch Biochem Biophys ; 557: 72-81, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24956592

RESUMO

Protein disulfide isomerase (PDI) is a dithiol-disulfide oxidoreductase that has essential roles in redox protein folding. PDI has been associated with protective roles against protein aggregation, a hallmark of neurodegenerative diseases. Intriguingly, PDI has been detected in the protein inclusions found in the central nervous system of patients of neurodegenerative diseases. Oxidized proteins are also consistently detected in such patients, but the agents that promote these oxidations remain undefined. A potential trigger of protein oxidation is the bicarbonate-dependent peroxidase activity of the human enzyme superoxide dismutase 1 (hSOD1). Therefore, we examined the effects of this activity on PDI structure and activity. The results showed that PDI was oxidized to radicals that lead to PDI inactivation and aggregation. The aggregates are huge and apparently produced by covalent cross-links. Spin trapping experiments coupled with MS analysis indicated that at least 3 residues of PDI are oxidized to tyrosyl radicals (Y(63), Y(116) and Y(327)). Parallel experiments showed that PDI is also oxidized to radicals, inactivated and aggregated by the action of photolytically generated carbonate radical and by UV light. PDI is prone to inactivation and aggregation by one-electron oxidants and UV light probably because of its high content of aromatic amino acids.


Assuntos
Bicarbonatos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Superóxido Dismutase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas/métodos , Oxirredução , Raios Ultravioleta
5.
Biochem J ; 455(1): 37-46, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23855710

RESUMO

Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of various diseases via mechanisms that are not completely understood. Recently, we reported that high doses of tempol moderately increased survival in a rat model of ALS (amyotrophic lateral sclerosis) while decreasing the levels of oxidized hSOD1 (human Cu,Zn-superoxide dismutase) in spinal cord tissues. To better understand such a protective effect in vivo, we studied the effects of tempol on hSOD1 oxidation in vitro. The chosen oxidizing system was the bicarbonate-dependent peroxidase activity of hSOD1 that consumes H2O2 to produce carbonate radical, which oxidizes the enzyme. Most of the experiments were performed with 30 µM hSOD1, 25 mM bicarbonate, 1 mM H2O2, 0.1 mM DTPA (diethylenetriaminepenta-acetic acid) and 50 mM phosphate buffer at a final pH of 7.4. The results showed that tempol (5-75 µM) does not inhibit hSOD1 turnover, but decreases its resulting oxidation to carbonylated and covalently dimerized forms. Tempol acted by scavenging the carbonate radical produced and by recombining with hSOD1-derived radicals. As a result, tempol was consumed nearly stoichiometrically with hSOD1 monomers. MS analyses of turned-over hSOD1 and of a related peptide oxidized by the carbonate radical indicated the formation of a relatively unstable adduct between tempol and hSOD1-Trp32•. Tempol consumption by the bicarbonate-dependent peroxidase activity of hSOD1 may be one of the reasons why high doses of tempol were required to afford protection in an ALS rat model. Overall, the results of the present study confirm that tempol can protect against protein oxidation and the ensuing consequences.


Assuntos
Bicarbonatos/química , Óxidos N-Cíclicos/química , Sequestradores de Radicais Livres/química , Peróxido de Hidrogênio/química , Peptídeos/química , Peroxidases/química , Superóxido Dismutase/química , Bicarbonatos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ensaios Enzimáticos , Escherichia coli/enzimologia , Escherichia coli/genética , Radicais Livres/química , Humanos , Oxirredução , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Peroxidases/antagonistas & inibidores , Peroxidases/metabolismo , Carbonilação Proteica , Multimerização Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Marcadores de Spin , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA