Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 27(1): 544-553, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494801

RESUMO

The impact of nicotine (NIC) on plasticity is thought to be primarily determined via calcium channel properties of nicotinic receptor subtypes, and glutamatergic plasticity is likewise calcium-dependent. Therefore glutamatergic plasticity is likely modulated by the impact of nicotinic receptor-dependent neuronal calcium influx. We tested this hypothesis for transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity, which is abolished by NIC in nonsmokers. To reduce calcium influx under NIC, we blocked N-methyl-d-aspartate (NMDA) receptors. We applied anodal tDCS combined with 15 mg NIC patches and the NMDA-receptor antagonist dextromethorphan (DMO) in 3 different doses (50, 100, and 150 mg) or placebo medication. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor-evoked potential amplitudes after plasticity induction. NIC abolished anodal tDCS-induced motor cortex excitability enhancement, which was restituted under medium dosage of DMO. Low-dosage DMO did not affect the impact of NIC on tDCS-induced plasticity and high-dosage DMO abolished plasticity. For DMO alone, the low dosage had no effect, but medium and high dosages abolished tDCS-induced plasticity. These results enhance our knowledge about the proposed calcium-dependent impact of NIC on plasticity in humans and might be relevant for the development of novel nicotinic treatments for cognitive dysfunction.


Assuntos
Dextrometorfano/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Análise de Variância , Relação Dose-Resposta a Droga , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA