Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38399285

RESUMO

Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague-Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 µg/mL) was substantially higher than in plasma (0.7 ± 0.05 µg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure.

2.
Eur J Pharm Sci ; 192: 106638, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967657

RESUMO

In this study, nanostructured lipid carriers (NLC) were developed and employed to obtain in situ thermosensitive formulations for the ductal administration and prolonged retention of drugs as a new strategy for breast cancer local treatment. NLC size was influenced by the type and concentration of the oil phase, surfactants, and drug incorporation, ranging from 221.6 to 467.5 nm. The type of liquid lipid influenced paclitaxel and 5-fluorouracil cytotoxicity, with tributyrin-containing NLC reducing IC50 values by 2.0-7.0-fold compared to tricaprylin NLC in MCF-7, T-47D and MDA-MB-231 cells. In spheroids, the NLCs reduced IC50 compared to either drug solution (3.2-6.2-fold). Although a significant reduction (1.26 points, p < 0.001) on the health index of Galleria mellonella larvae was observed 5 days after NLC administration, survival was not significantly reduced. To produce thermosensitive gels, the NLCs were incorporated in a poloxamer (11 %, w/w) dispersion, which gained viscosity (2-fold) at 37 °C. After 24 h, ∼53 % of paclitaxel and 83 % of 5-fluorouracil were released from the NLC; incorporation in the poloxamer gel further prolonged release. Intraductal administration of NLC-loaded gel increased the permanence of hydrophilic (2.2-3.0-fold) and lipophilic (2.1-2.3-fold) fluorescent markers in the mammary tissue compared to the NLC (as dispersion) and the markers solutions. In conclusion, these results contribute to improving our understanding of nanocarrier design with increased cytotoxicity and prolonged retention for the intraductal route. Tributyrin incorporation increased the cytotoxicity of paclitaxel and 5-fluorouracil in monolayer and spheroids, while NLC incorporation in thermosensitive gels prolonged tissue retention of both hydrophilic and hydrophobic compounds.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Poloxâmero , Lipídeos/química , Nanoestruturas/química , Géis/química , Paclitaxel , Fluoruracila , Tamanho da Partícula
3.
Int J Biol Macromol ; 219: 84-95, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35907458

RESUMO

Nanoemulsions modified with chitosan (NE-Q) or hyaluronic acid (NE-HA), developed for intraductal administration of piplartine (piperlongumine) and local breast cancer treatment, were evaluated for cytotoxic effects in vitro in 2D and 3D breast cancer models and in vivo in a chemically induced carcinogenesis model. Droplet size was lower than 100 nm, and zeta potential varied from +17.9 to -25.5 mV for NE-Q and NE-HA, respectively. Piplartine nanoencapsulation reduced its IC50 up to 3.6-fold in T-47D and MCF-7 monolayers without differences between NE-Q and NE-HA, and up to 6.6-fold in cancer spheroids. Cytotoxicity improvement may result from a more efficient NE-mediated delivery, as suggested by stronger fluorescent staining of cells and spheroids. In 1-methyl-1-nitrosourea -induced breast cancer models, intraductal administration of piplartine-loaded NE-HA inhibited breast tumor development and histological alterations. These results support the potential applicability of piplartine-loaded NE-HA for intraductal treatment of breast cancer.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quitosana/farmacologia , Feminino , Humanos , Ácido Hialurônico/farmacologia , Piperidonas
4.
Int J Biol Macromol ; 165(Pt A): 1055-1065, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987080

RESUMO

Due to the limited options for topical management of skin cancer, this study aimed at developing and evaluating nanoemulsions (NE) for topical delivery of the cytotoxic agent piplartine (piperlongumine). NEs were modified with chitosan or sodium alginate, and the effects on the physicochemical properties, piplartine delivery and formulation efficacy were evaluated. The nanoemulsion droplets displayed similar size (96-112 nm), but opposite charge; the polysaccharides improved piplartine penetration into and across the skin (1.3-1.9-fold) in a similar manner, increasing the ratio "drug in the skin/receptor phase" by 1.4-1.5-fold compared to the plain NE and highlighting their relevance for cutaneous localization. Oleic acid addition to the chitosan-containing NE further increased drug penetration (~1.9-2.0-fold), as did increases in drug content from 0.5 to 1%. The cytotoxicity of piplartine was ~2.8-fold higher when the drug was incorporated in the chitosan-containing NE compared to its solution (IC50 = 14.6 µM) against melanoma cells. The effects of this nanocarrier on 3D melanoma tissues were concentration-related; at 1%, piplartine elicited marked epidermis destruction. These results support the potential applicability of the chitosan-modified nanoemulsion containing piplartine as a new strategy for local management of skin cancer.


Assuntos
Emulsões/química , Melanoma/tratamento farmacológico , Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Alginatos/química , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Citotoxinas/química , Emulsões/farmacologia , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Piperidonas/química , Piperidonas/farmacologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA