Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 77, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835059

RESUMO

Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.

2.
Int J Biol Macromol ; 263(Pt 1): 130230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373564

RESUMO

Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.


Assuntos
Citrus sinensis , Pectinas , Pectinas/química , Citrus sinensis/química , Ácido Cítrico/química , Temperatura , Antioxidantes/farmacologia , Excipientes
3.
Environ Int ; 184: 108462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335627

RESUMO

While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid ß, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Estudos Prospectivos , Biomarcadores
4.
IJID Reg ; 10: 44-51, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149263

RESUMO

Objectives: To identify the SARS-CoV-2 variants Delta and Omicron during the fourth wave of the COVID-19 pandemic in Mexico using samples taken from 19 locations in 18 out of the 32 states. Methods: The genetic material concentration was done with PEG/NaCl precipitation, SARS-CoV-2 presence was confirmed by reverse transcriptase-quantitative polymerase chain reaction assay, the variant detection was carried out using a commercial mutation detection panel kit, and variant/mutation confirmation was done by amplicon sequencing of receptor-binding domain target region. The study used 41 samples. Results: The Delta variant was confirmed in two samples during August 2021 (Querétaro and CDMX) and in three samples during November 2021 (Aguascalientes, Ciudad Juárez campuses, and Nuevo Leon). In December 2021, another sample with the Delta variant was confirmed in Nuevo Leon. Between January to March 2022 only the presence of Omicron was confirmed, (variant BA.1). Additionally, in this period six samples were identified with the status "Variant Not Determined". Conclusion: To our knowledge, this study is one of the first to identify Omicron and Delta variants with polymerase chain reaction in Mexico and Latin America and its distribution across the country with 56% Mexican states making it a viable alternative for variant detection without conducting a large quantity of sequencing of clinical tests.

5.
Biosensors (Basel) ; 13(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887115

RESUMO

Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.


Assuntos
Técnicas Biossensoriais , Listeria monocytogenes , Nanoestruturas , Microbiologia de Alimentos , Técnicas Biossensoriais/métodos , Listeria monocytogenes/genética , Escherichia coli
6.
Vet Sci ; 10(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37888561

RESUMO

Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest. The main viruses that affect the swine industry are described in this review, including African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine circovirus (PCV), which have been effectively detected by different molecular tools in recent times. Here, we describe the rationale of molecular techniques such as multiplex PCR, isothermal methods (LAMP, NASBA, RPA, and PSR) and novel methods such as CRISPR-Cas and microfluidics platforms. Successful molecular diagnostic developments are presented by highlighting their most important findings. Finally, we describe the barriers that hinder the large-scale development of affordable, accessible, rapid, and easy-to-use molecular diagnostic tests. The evolution of diagnostic techniques is critical to prevent the spread of viruses and the development of viral reservoirs in the swine industry that impact the possible development of future pandemics and the world economy.

7.
Plants (Basel) ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896072

RESUMO

Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients.

8.
Viruses ; 15(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37766347

RESUMO

Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Águas Residuárias , Poluentes Químicos da Água/análise , Tecnologia
9.
Foods ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685092

RESUMO

Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.

10.
Environ Res ; 238(Pt 2): 117180, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739154

RESUMO

The conversion of biomass waste into high-value nanomaterials such as carbon dots might represent a great advancement towards a circular economy system. Biomass wastes are an excellent choice as carbon precursors because of their wide availability, abundance, chemical composition, and eco-friendly nature. Moreover, their use as a raw material might decrease the total cost of the synthesis processes and reduce the environmental impacts. In addition, the complex composition of biomass leads to carbon dots with abundant functional groups, which in turn enhances water dispersibility and photoluminescence properties. In this manner, the effective transformation of biomass wastes into carbon dots reduces environmental pollution through the inadequate management of waste while producing carbon dots with enhanced performances. Therefore, this review describes biomass wastes as potential candidates for the synthesis of carbon dots through different synthesis methods. In addition, we have analyzed the great potential of biomass-derived carbon dots (CDs) for the degradation and detection of emerging pharmaceutical pollutants by promoting a circular economy approach. Finally, we identified current challenges to propose possible research directions for the large-scale and sustainable synthesis of high-quality biomass-derived CDs.


Assuntos
Carbono , Nanoestruturas , Carbono/química , Poluição Ambiental , Biomassa , Preparações Farmacêuticas
11.
Mar Drugs ; 21(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623731

RESUMO

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Assuntos
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgas , Biomassa , Ácidos Graxos , Nitrogênio , Fósforo , Ésteres
12.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514404

RESUMO

The encapsulation of gallic acid (GA) through several methods has enhanced its shelf life and facilitated industrial applications. Polymeric matrices made of alginate and pectin were evaluated to encapsulate GA via spray drying. The pH-responsive release mechanism was monitored to validate the matrices' performances as wall materials and extend the bioactive compound stability. The microcapsules produced were characterized via scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and cyclic voltammetry (CV). The retention and encapsulation efficiency ranges were 45-82% and 79-90%, respectively. The higher values were reached at 3 and 0.75% (w/v) pectin and sodium alginate, respectively. The scanning electron microscopy showed smooth spherical capsules and the average particle size ranged from 1327 to 1591 nm. Their performance and stability were evaluated with optimal results at a pH value of 7 throughout the investigation period. Therefore, this work demonstrated the suitability of gallic acid encapsulation via spray drying using pectin and alginate, which are biopolymers that can be obtained from circular economy processes starting from agro-industrial biomass. The developed formulations provide an alternative to protecting and controlling the release of GA, promoting its application in the food, pharmaceutical, and cosmetic industries and allowing for the release of compounds with high bioactive potential.

13.
Plants (Basel) ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447006

RESUMO

Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.

14.
Polymers (Basel) ; 15(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376402

RESUMO

This work evaluated maltodextrin/alginate and ß-glucan/alginate mixtures in the food industry as wall materials for the microencapsulation of Schizochytrium sp. oil, an important source of the omega-3 fatty acid DHA (docosahexaenoic acid). Results showed that both mixtures display a shear-thinning behavior, although the viscosity is higher in ß-glucan/alginate mixtures than in maltodextrin/alginate. Scanning electron microscopy was used to assess the morphology of the microcapsules, which appeared more homogeneous for maltodextrin/alginate. In addition, oil-encapsulation efficiency was higher in maltodextrin/alginate mixtures (90%) than in ß-glucan/alginate mixtures (80%). Finally, evaluating the microcapsules' stability by FTIR when exposed to high temperature (80 °C) showed that maltodextrin/alginate microcapsules were not degraded contrary to the ß-glucan/alginate microcapsules. Thus, although high oil-encapsulation efficiency was obtained with both mixtures, the microcapsules' morphology and prolonged stability suggest that maltodextrin/alginate is a suitable wall material for microencapsulation of Schizochytrium sp. oil.

15.
Cells ; 12(12)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371095

RESUMO

The skin is the organ that serves as the outermost layer of protection against injury, pathogens, and homeostasis with external factors; in turn, it can be damaged by factors such as burns, trauma, exposure to ultraviolet light (UV), infrared radiation (IR), activating signaling pathways such as Toll-like receptors (TLR) and Nuclear factor erythroid 2-related factor 2 (NRF2), among others, causing a need to subsequently repair and regenerate the skin. However, pathologies such as diabetes lengthen the inflammatory stage, complicating the healing process and, in some cases, completely inhibiting it, generating susceptibility to infections. Exosomes are nano-sized extracellular vesicles that can be isolated and purified from different sources such as blood, urine, breast milk, saliva, urine, umbilical cord bile cells, and mesenchymal stem cells. They have bioactive compounds that, thanks to their paracrine activity, have proven to be effective as anti-inflammatory agents, inducers of macrophage polarization and accelerators of skin repair and regeneration, reducing the possible complications relating to poor wound repair, and prolonged inflammation. This review provides information on the use of exosomes as a promising therapy against damage from UV light, infrared radiation, burns, and skin disorders.


Assuntos
Queimaduras , Exossomos , Dermatopatias , Feminino , Humanos , Cicatrização , Exossomos/metabolismo , Pele/patologia , Dermatopatias/patologia , Queimaduras/terapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-37239638

RESUMO

According to the World Health Organization (WHO), stress can be defined as any type of alteration that causes physical, emotional, or psychological tension. A very important concept that is sometimes confused with stress is anxiety. The difference between stress and anxiety is that stress usually has an existing cause. Once that activator has passed, stress typically eases. In this respect, according to the American Psychiatric Association, anxiety is a normal response to stress and can even be advantageous in some circumstances. By contrast, anxiety disorders differ from temporary feelings of anxiousness or nervousness with more intense feelings of fear or anxiety. The Diagnostic and Statistical Manual (DSM-5) explicitly describes anxiety as exorbitant concern and fearful expectations, occurring on most days for at least 6 months, about a series of events. Stress can be measured by some standardized questionnaires; however, these resources are characterized by some major disadvantages, the main one being the time consumed to interpret them; i.e., qualitative information must be transformed to quantitative data. Conversely, a physiological recourse has the advantage that it provides quantitative spatiotemporal information directly from brain areas and it processes data faster than qualitative supplies. A typical option for this is an electroencephalographic record (EEG). We propose, as a novelty, the application of time series (TS) entropies developed by us to inspect collections of EEGs obtained during stress situations. We investigated this database related to 23 persons, with 1920 samples (15 s) captured in 14 channels for 12 stressful events. Our parameters reflected that out of 12 events, event 2 (Family/financial instability/maltreatment) and 10 (Fear of disease and missing an important event) created more tension than the others. In addition, the most active lobes reflected by the EEG channels were frontal and temporal. The former is in charge of performing higher functions, self-control, self monitoring, and the latter is in charge of auditory processing, but also emotional handling. Thus, events E2 and E10 triggering frontal and temporal channels revealed the actual state of participants under stressful situations. The coefficient of variation revealed that E7 (Fear of getting cheated/losing someone) and E11 (Fear of suffering a serious illness) were the events with more changes among participants. In the same sense, AF4, FC5, and F7 (mainly frontal lobe channels) were the most irregular on average for all participants. In summary, by means of dynamic entropy analysis, the goal is to process the EEG dataset in order to elucidate which event and brain regions are key for all participants. The latter will allow us to easily determine which was the most stressful and on which brain zone. This study can be applied to other caregivers datasets. All this is a novelty.


Assuntos
Ansiedade , Cuidadores , Humanos , Entropia , Encéfalo , Eletroencefalografia
17.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241860

RESUMO

Instant controlled pressure drop (DIC) is one of the emerging technologies in food processing; it can be used for drying, freezing and the extraction of bioactive molecules without damaging their properties. Legumes, such as lentils, are one of the most consumed foods in the world; however, they are mainly cooked by boiling, which causes the loss of antioxidant compounds. This work evaluated the effect of 13 different DIC treatments (with pressure ranges of 0.1-0.7 MPa and times of 30-240 s) on the content of polyphenols (Folin-Ciocalteu and High Performance Liquid Chromatography HPLC) and flavonoids (2-aminoethyl diphenylborinate) as well as the antioxidant activity (DPPH and TEAC) of green lentils. The DIC 11 treatment (0.1 MPa, 135 s) obtained the best release of polyphenols, which in turn are related to antioxidant capacity. The abiotic stress generated by DIC could lead to the breakdown of the cell wall structure, which favors the availability of antioxidant compounds. Finally, the most efficient conditions for DIC to promote the release of phenolic compounds and maintain antioxidant capacity were found under low pressures (<0.1 MPa) and short times (<160 s).


Assuntos
Antioxidantes , Lens (Planta) , Antioxidantes/química , Polifenóis/análise , Flavonoides/química , Lens (Planta)/química , Fenóis/química , Cromatografia Líquida de Alta Pressão
18.
MethodsX ; 10: 102160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095869

RESUMO

Emerging pollutants (EPs) are a group of different contaminants, such as hormones, pesticides, heavy metals, and drugs, usually found in concentrations between the order of ng and µg per liter. The global population's daily city and agro-industrial activities release EPs into the environment.  Due to the chemical nature of EPs and deficient wastewater treatment and management, they are transported to superficial and groundwater through the natural water cycle, where they can potentially cause harmful effects on living organisms. Recent efforts have focused on developing technology that allows EPs quantification and monitoring in real-time and in situ. The newly developed technology aims to provide accessible groundwater management that detects and treats EPs while avoiding their contact with living beings and their toxic effects. This review presents some of the recently reported techniques that have been applied to advance the detection of EPs in groundwater and potential technologies that can be used for EP removal.

19.
MethodsX ; 10: 102161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077891

RESUMO

Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.

20.
Environ Res ; 229: 115892, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084948

RESUMO

The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.


Assuntos
COVID-19 , Poluentes Químicos da Água , Animais , Humanos , Biocatálise , Bioacumulação , Pandemias , Água , Poluentes Químicos da Água/análise , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA