Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2298054, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183219

RESUMO

The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.


Assuntos
Microbiota , Simbiose , Produtos Agrícolas , Agricultura , Mudança Climática
2.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37916690

RESUMO

Strain FSQ1T was isolated from the rhizosphere of the common bean (Phaseolus vulgaris L.) crop sampled in a commercial field located in the Gabriel Leyva Solano community, which belongs to the Guasave municipality (state of Sinaloa, Mexico). Based on its full-length 16S rRNA gene sequence, strain FSQ1T was assigned to the genus Bacillus (100 % similarity). This taxonomic affiliation was supported by its morphological and metabolic traits. Strain FSQ1T was a Gram-stain-positive bacterium with the following characteristics: rod-shaped cells, strictly aerobic, spore forming, catalase positive, reduced nitrate to nitrite, hydrolysed starch and casein, grew in the presence of lysozyme and 2 % NaCl, utilized citrate, grew at pH 6.0-8.0, produced acid from glucose, was unable to produce indoles from tryptophan, and presented biological control against Sclerotinia sclerotiorum. The whole-genome phylogenetic results showed that strain FSQ1T formed an individual clade in comparison with highly related Bacillus species. In addition, the maximum values for average nucleotide identity and from Genome-to-Genome Distance Calculator analysis were 91.57 and 44.20 %, respectively, with Bacillus spizizenii TU-B-10T. Analysis of its fatty acid content showed the ability of strain FSQ1T to produce fatty acids that are not present in closely related Bacillus species, such as C18 : 0 and C20 : 0. Thus, these results provide strong evidence that strain FSQ1T represents a novel species of the genus Bacillus, for which the name Bacillus mexicanus sp. nov. is proposed. The type strain is FSQ1T (CM-CNRG TB51T=LBPCV FSQ1T).


Assuntos
Bacillus , Phaseolus , Ácidos Graxos/química , México , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
3.
Curr Res Microb Sci ; 4: 100193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293250

RESUMO

Bacillus cabrialesii TE3T is a strictly aerobic and Gram-stain-positive plant growth-promoting bacterium, motile and catalase-positive. In addition, strain TE3T was also recently described as a biological control agent. Here, we present the complete circularized genome of this type strain, as well as a whole genome analysis identifying genes of agricultural interest. Thus, a hybrid assembly method was performed using short-read sequencing through the Illumina MiSeq platform, and long-read sequencing through the MinION sequencing technology by Oxford Nanopore Technology (ONT). This assembly method showed a closed circular chromosome of 4,125,766 bp and 44.2% G + C content. The strain TE3T genome annotation, based on the RAST platform, presented 4,282 Coding DNA sequences (CDS) distributed in 335 subsystems, from which 4 CDS are related to the promotion of plant growth and 28 CDS to biological control. Also, Prokka (Rapid Prokaryotic Genome Annotation) predicted a total of 119 RNAs composed of 87 tRNAs, 31 rRNA, and 1 tmRNA; and the PGAP (Prokaryotic Genome Annotation Pipeline) predicted a total of 4,212 genes (3,991 CDS). Additionally, seven putative biosynthetic gene clusters were identified by antiSMASH, such as Fengycin, Bacilysin, Subtilosin A, Bacillibactin, Bacillaene, Surfactin, and Rizocticin A, which are related to antimicrobial and antifungal properties, whose gene presence was further supported by the Prokaryotic Genome Annotation Pipeline (PGAP) annotation. Thus, the complete genome of Bacillus cabrialesii TE3T showed promising bioactivities for the use of this type strain to bioformulate bacterial inoculants for sustainable agriculture.

5.
Plants (Basel) ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771517

RESUMO

Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.

6.
Curr Res Microb Sci ; 3: 100138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909597

RESUMO

Bacillus sp. strain FSQ1 was isolated from the common bean (Phaseolus vulgaris L.). The genome of this strain presented 3,598,499 bp; 43.0% G + C content; 925,913 bp N50; 2 L50; 33 contigs; 97 RNAs and 3,908 predicted coding DNA sequences (CDS) distributed in 315 subsystems. Based on genome mining, the biological control activity of strains FSQ1 could be associated with the biosynthesis of rhizocticin A and bacillibactin. Thus, this strain is a promising active ingredient for the formulation of biopesticides.

7.
Microbiol Res ; 251: 126826, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34298216

RESUMO

Bipolaris sorokiniana is an important biotic constraint for global wheat production, causing spot blotch disease. In this work, we present a comprehensive characterization of the cell-free culture filtrate (CF) and precipitated fraction (PF) of Bacillus cabrialesii TE3T showing an effective inhibition of spot blotch. Our results indicated that CF produced by B. cabrialesii TE3T inhibits the growth of B. sorokiniana through stable metabolites (after autoclaving and proteinase K treatment). Antifungal metabolites in CF and PF were explored by an integrated genomic-metabolomic approach. Genome-mining revealed that strain TE3T contains the biosynthetic potential to produce wide spectrum antifungal (surfactin, fengycin, and rhizocticin A) and antibacterial metabolites (bacillaene, bacilysin, bacillibactin, and subtilosin A), and through bioactivity-guided LC-ESI-MS/MS approach we determined that a lipopeptide complex of surfactin and fengycin homologs was responsible for antifungal activity exhibited by B. cabrialesii TE3T against the studied phytopathogen. In addition, our results demonstrate that i) a lipopeptide complex inhibits B. sorokiniana by disrupting its cytoplasmatic membrane and ii) reduced spot blotch disease by 93 %. These findings show the potential application of metabolites produced by strain TE3T against B. sorokiniana and provide the first insight into antifungal metabolites produced by the novel Bacillus species, Bacillus cabrialesii.


Assuntos
Antifúngicos , Bacillus , Biotecnologia , Bipolaris , Triticum , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Bacillus/química , Bacillus/genética , Biotecnologia/métodos , Bipolaris/efeitos dos fármacos , Lipopeptídeos/química , Doenças das Plantas/microbiologia , Espectrometria de Massas em Tandem , Triticum/microbiologia
8.
Microbiol Res ; 242: 126612, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33059112

RESUMO

Sustainable agriculture requires the recruitment of bacterial agents to control diverse plant diseases such as bacterial endophytes. Bacterial endophytes colonize and inhabit internal plant tissues without causing any apparent damage. Within the plant, these bacteria exert multiple beneficiary effects, including direct stimulation of plant growth by the action of phytohormones or the production of metabolites. However, bacterial endophytes also protect their plant host through biocontrol pathogens or by inducing plant innate immune system. The present work makes a systematic and in-depth review on the current state of endophytic bacterial diversity, their plant colonization strategies, and their potential roles as protective agents against plant diseases during pre- and post-harvest stages of crop productivity. In addition, an exploration of their beneficial effects on sustainable agriculture by reducing/eliminating the use of toxic agrochemicals was conducted. Finally, we propose diverse effective strategies for the application of endophytic bacteria as biological agents during both pre- and post-harvest stages, with the aim of protecting crop plants and their agricultural products.


Assuntos
Agentes de Controle Biológico/metabolismo , Endófitos/metabolismo , Desenvolvimento Vegetal , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , Agricultura , Antibiose , Bactérias/metabolismo , Biodiversidade , Produção Agrícola , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/microbiologia , Simbiose
9.
Int J Syst Evol Microbiol ; 69(12): 3939-3945, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31526457

RESUMO

Strain TE3T, an endophytic plant growth promoting bacterium, was isolated from wheat (Triticumturgidum subsp. durum) sampled in the Yaqui Valley, Mexico. Biochemical, phenotypic and genotypic approaches were used to clarify the taxonomic affiliation of this strain. Based on analysis of its full-length 16S rRNA gene, strain TE3T was assigned to the genus Bacillus (similarity ≥98.7 %). This finding was supported by morphological and metabolic characteristics, such as rod shape, strictly aerobic metabolism, spore formation, Gram-positive staining, catalase-positive activity, reduction of nitrate to nitrite, starch and casein hydrolysis, growth in presence of lysozyme and 2 % NaCl, citrate utilization, growth pH from 6.0 to 8.0, and acid and indole production from glucose and tryptophan, respectively. The whole-genome phylogenetic relationship showed that TE3T formed an individual clade with Bacillus tequilensis KCTC 13622T, distant from that generated by all Bacillus subtilis subspecies. The maximum values for average nucleotide identity and in silico DNA-DNA hybridization were 93.85 and 54.30 %, respectively, related to Bacillus subtilissubsp. inaquosorum KCTC 13429T. Analysis of its fatty acid content showed the ability of strain TE3T to bio-synthetize fatty acids that are not present in closely related Bacillus species, such as C12 : 0, C12 : 0 2OH, C12 : 0 3OH, C17 : 0, iso-C17 : 0 3OH and C18 : 1ω9c. These results provide evidence that strain TE3T is a novel species of the genus Bacillus, for which the name Bacilluscabrialesii sp. nov. is proposed. The type strain of Bacilluscabrialesii is TE3T (CM-CNRG TB54T=CCStamb A1T).


Assuntos
Bacillus/classificação , Filogenia , Triticum/microbiologia , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , México , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Ecotoxicology ; 28(5): 569-577, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31129746

RESUMO

Chlorothalonil is a commonly used fungicide to control the karnal bunt caused by Tilletia indica Mitra in wheat production from the Yaqui Valley, Mexico. Here, the effect of Chlorothalonil on the growth of 132 bacterial strains associated with wheat rhizosphere from the Yaqui Valley was evaluated, as well as their ability to produce indoles. Thirty-three percent of the evaluated strains were inhibited by Chlorothalonil, being Bacillus and Paenibacillus the most inhibited genera, observing an inhibition >50% of their strains. In addition, 49% of the inhibited strains showed the ability to produce indoles (>5 µg/mL), where the genus Bacillus was the most abundant (80%). The remaining strains (67%) were tolerant to the evaluated fungicide, but only 37% of those showed the ability to produce indoles, which could be considered as Plant Growth Promoting Rhizobacteria (PGPR). These results showed that Chlorothalonil is not only an antifungal compound but also inhibits the growth of bacterial strains with the ability to produce indoles. Thus, the intensive application of fungicides to agro-systems needs more validation in order to develop sustainable agricultural practices for food production.


Assuntos
Bacillus/efeitos dos fármacos , Fungicidas Industriais/efeitos adversos , Nitrilas/efeitos adversos , Paenibacillus/efeitos dos fármacos , Rizosfera , Bacillus/metabolismo , Bacillus/fisiologia , Indóis/metabolismo , México , Paenibacillus/metabolismo , Paenibacillus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA