Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 9: 644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619469

RESUMO

This study developed a computational tool with a graphical interface and a web-service that allows the identification of phage regions through homology search and gene clustering. It uses G+C content variation evaluation and tRNA prediction sites as evidence to reinforce the presence of prophages in indeterminate regions. Also, it performs the functional characterization of the prophages regions through data integration of biological databases. The performance of PhageWeb was compared to other available tools (PHASTER, Prophinder, and PhiSpy) using Sensitivity (Sn) and Positive Predictive Value (PPV) tests. As a reference for the tests, more than 80 manually annotated genomes were used. In the PhageWeb analysis, the Sn index was 86.1% and the PPV was approximately 87%, while the second best tool presented Sn and PPV values of 83.3 and 86.5%, respectively. These numbers allowed us to observe a greater precision in the regions identified by PhageWeb while compared to other prediction tools submitted to the same tests. Additionally, PhageWeb was much faster than the other computational alternatives, decreasing the processing time to approximately one-ninth of the time required by the second best software. PhageWeb is freely available at http://computationalbiology.ufpa.br/phageweb.

2.
PLoS One ; 12(5): e0178154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542514

RESUMO

With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.


Assuntos
Genômica , Software , Interface Usuário-Computador , Algoritmos , Biologia Computacional , Gráficos por Computador , Bases de Dados Genéticas , Escherichia coli/classificação , Escherichia coli/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Filogenia , Linguagens de Programação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA