Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl. cancer res ; 40: 1-12, Oct. 19, 2020. tab, ilus
Artigo em Inglês | LILACS, Inca | ID: biblio-1281498

RESUMO

Background: Next-generation sequencing (NGS) based assay for finding an actionable driver in non-small-cell lung cancer is a less used modality in clinical practice. With a long list of actionable targets, limited tissue, arduous single-gene assays, the alternative of NGS for broad testing in one experiment looks attractive. We report here our experience with NGS for biomarker testing in hundred advanced lung cancer patients. Methods: Predictive biomarker testing was performed using the Ion AmpliSeq™ Cancer Hotspot Panel V2 (30 tumors) and Oncomine™ Solid Tumor DNA and Oncomine™ Solid Tumor Fusion Transcript kit (70 tumors) on IonTorrent sequencing platform. Results: One-seventeen distinct aberrations were detected across 29 genes in eighty-six tumors. The most commonly mutated genes were TP53 (43% cases), EGFR (23% cases) and KRAS (17% cases). Thirty-four patients presented an actionable genetic variant for which targeted therapy is presently available, and fifty-two cases harbored non-actionable variants with the possibility of recruitment in clinical trials. NGS results were validated by individual tests for detecting EGFR mutation, ALK1 rearrangement, ROS1 fusion, and c-MET amplification. Compared to single test, NGS exhibited good agreement for detecting EGFR mutations and ALK1 fusion (sensitivity- 88.89%, specificity- 100%, Kappa-score 0.92 and sensitivity- 80%, specificity- 100%, Kappa-score 0.88; respectively). Further, the response of patients harboring tyrosine kinase inhibitor (TKI) sensitizing EGFR mutations was assessed. The progression-free-survival of EGFR positive patients on TKI therapy, harboring a concomitant mutation in PIK3CAmTOR and/or RAS-RAF-MAPK pathway gene and/or TP53 gene was inferior to those with sole-sensitizing EGFR mutation (2 months vs. 9.5 months, P = 0.015). Conclusions: This is the first study from South Asia looking into the analytical validity of NGS and describing the mutational landscape of lung cancer patients to study the impact of co-mutations on cancer biology and treatment outcome. Our study demonstrates the clinical utility of NGS testing for identifying actionable variants and making treatment decisions in advanced lung cancer


Assuntos
Humanos , Masculino , Feminino , Proto-Oncogenes/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Mutação/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA