RESUMO
White striping (WS) is one of the most common myopathies identified in broiler chickens leading to substantial production losses, where the incidence reaches 12% in commercial chickens. It occurs primarily in heavier chickens being a modification of the breast muscle characterized by the presence of pale parallel streaks in the same orientation of the muscle fibers. Since the WS etiology remains unclear, we aimed to identify the biological and genetic mechanisms involved in its occurrence through the whole transcriptome analysis of WS in affected and unaffected chicken breast muscles. A total of 11,177 genes were expressed in the pectoralis major muscle. Out of those, 1,441 genes were differentially expressed (FDR ≤ 0.01) between the two analyzed groups, being, respectively, 772 genes upregulated and 669 downregulated in the WS affected group. A total of 36 significantly overrepresented GO terms related to WS myopathy were enriched, and the most relevant biological processes were activation of immune system, angiogenesis, hypoxia, cell death, and striated muscle contraction. The unbalance of those biological processes may trigger the occurrence of the WS phenotype in broilers. The possible lack of capillary blood supply homogeneously in the muscle triggers the hypoxia, following the activation of glycolysis, calcium signaling and apoptosis related genes facilitating the tissue damage and WS incidence.
Assuntos
Galinhas , Perfilação da Expressão Gênica/veterinária , Doenças Musculares/veterinária , Músculos Peitorais/fisiopatologia , Doenças das Aves Domésticas/genética , Animais , Masculino , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Fenótipo , Doenças das Aves Domésticas/fisiopatologiaRESUMO
Economic losses due to an increase of leg disorders in broilers have become a major concern of the poultry industry. Despite the efforts to reduce skeletal abnormalities in chickens, insufficient progress has been made. Bacterial chondronecrosis with osteomyelitis (BCO) is one of the main disorders that affect bone integrity in broilers. However, the genetic pathways and genes involved in most bone problems, including BCO, remains unclear. In this study, femoral samples from male broilers with 45 days of age affected or not with BCO were used to compare the relative expression with a reverse transcription real time PCR approach of 13 candidate genes: SPP1 (osteopontin), TNFRSF11B (osteoprotegerin), SPARC (osteonectin), CALB1 (calbidin 1), CALM (Calmodulin 2), IBSP (sialoprotein), COL1A2 (collagen, type I, α 2), BMP2 (bone morphogenetic protein 2), BMP3 (bone morphogenetic protein 3), RANKL (κ-B nuclear factor ligand), SMAD1 (SMAD family member 1), LEPR (leptin receptor) and RUNX2 (related transcription factor Runt 2). Differential expression test between affected and non-affected groups was performed using the REST software. The RUNX2 and SPARC genes were downregulated (P<0.05) in the affected group, with reduced expression of fourfold when compared with the non-affected group. This result indicates that the downregulation of RUNX2 and SPARC can contribute to an increased incidence of BCO in broilers.