Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677649

RESUMO

Even though some methods for the detection of colorectal cancer have been used clinically, most of the techniques used do not consider the in situ detection of colorectal cancer (CRC) biomarkers, which would favor in vivo real-time monitoring of the carcinogenesis process and consequent studies of the disease. In order to give a scientific and computational framework ideal for the evaluation of diagnosis techniques based on the early detection of biomarker molecules modeled as spherical particles from the computational point of view, a computational representation of the rectum, stool and biomarker particles was developed. As consequence of the transport of stool, there was a displacement of CRC biomarker particles that entered the system as a result of the cellular apoptosis processes in polyps with a length lower than 1 cm, reaching a maximum velocity of 3.47×10-3 m/s. The biomarkers studied showed trajectories distant to regions of the polyp of origin in 1 min of simulation. The research results show that the biomarker particles for CRC respond to the variations in the movements of the stool with trajectories and speeds that depend on the location of the injury, which will allow locating the regions with the highest possibilities of catching particles through in situ measurement instruments in the future.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/diagnóstico , Reto , Fezes , Detecção Precoce de Câncer
2.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275316

RESUMO

Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.

3.
Polymers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956634

RESUMO

Drug nanoencapsulation increases the availability, pharmacokinetics, and concentration efficiency for therapeutic regimes. Azobenzene light-responsive molecules experience a hydrophobicity change from a polar to an apolar tendency by trans-cis photoisomerization upon UV irradiation. Polymeric photoresponse nanoparticles (PPNPs) based on azobenzene compounds and biopolymers such as chitosan derivatives show prospects of photodelivering drugs into cells with accelerated kinetics, enhancing their therapeutic effect. PPNP biocompatibility studies detect the safe concentrations for their administration and reduce the chance of side effects, improving the effectiveness of a potential treatment. Here, we report on a PPNP biocompatibility evaluation of viability and the first genotoxicity study of azobenzene-based PPNPs. Cell line models from human ventricular cardiomyocytes (RL14), as well as mouse fibroblasts (NIH3T3) as proof of concept, were exposed to different concentrations of azobenzene-based PPNPs and their precursors to evaluate the consequences on mitochondrial metabolism (MTT assay), the number of viable cells (trypan blue exclusion test), and deoxyribonucleic acid (DNA) damage (comet assay). Lethal concentrations of 50 (LC50) of the PPNPs and their precursors were higher than the required drug release and synthesis concentrations. The PPNPs affected the cell membrane at concentrations higher than 2 mg/mL, and lower concentrations exhibited lesser damage to cellular genetic material. An azobenzene derivative functionalized with a biopolymer to assemble PPNPs demonstrated biocompatibility with the evaluated cell lines. The PPNPs encapsulated Nile red and dofetilide separately as model and antiarrhythmic drugs, respectively, and delivered upon UV irradiation, proving the phototriggered drug release concept. Biocompatible PPNPs are a promising technology for fast drug release with high cell interaction opening new opportunities for azobenzene biomedical applications.

4.
Sci Rep ; 10(1): 2110, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034197

RESUMO

Nanoencapsulation is a rapidly expanding technology to enclose cargo into inert material at the nanoscale size, which protects cargo from degradation, improves bioavailability and allows for controlled release. Encapsulation of drugs into functional nanocarriers enhances their specificity, targeting ability, efficiency, and effectiveness. Functionality may come from cell targeting biomolecules that direct nanocarriers to a specific cell or tissue. Delivery is usually mediated by diffusion and erosion mechanisms, but in some cases, this is not sufficient to reach the expected therapeutic effects. This work reports on the development of a new photoresponsive polymeric nanocarrier (PNc)-based nanobioconjugate (NBc) for specific photo-delivery of cargo into target cells. We readily synthesized the PNcs by modification of chitosan with ultraviolet (UV)-photosensitive azobenzene molecules, with Nile red and dofetilide as cargo models to prove the encapsulation/release concept. The PNcs were further functionalized with the cardiac targeting transmembrane peptide and efficiently internalized into cardiomyocytes, as a cell line model. Intracellular cargo-release was dramatically accelerated upon a very short UV-light irradiation time. Delivering cargo in a time-space controlled fashion by means of NBcs is a promising strategy to increase the intracellular cargo concentration, to decrease dose and cargo side effects, thereby improving the effectiveness of a therapeutic regime.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanocápsulas , Células A549/efeitos dos fármacos , Células A549/metabolismo , Linhagem Celular , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Nanocápsulas/toxicidade , Nanopartículas/química , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Raios Ultravioleta
5.
CES med ; 32(3): 250-258, sep.-dic. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-974556

RESUMO

Resumen Las causas que pueden conducir a la obstrucción de la vía aérea central pueden ser de origen funcional, por obstrucción de la luz, por lesión orgánica parietal o compresión extrínseca; a su vez, también pueden agruparse en obstrucciones malignas y no malignas. Cuando una obstrucción reduce el 50 % de la luz de la vía aérea causa síntomas debilitantes y es una de las indicaciones para implantar un stent bronquial. Los stents bronquiales actualmente disponibles son una solución incompleta para las obstrucciones de las vías aéreas. Por otra parte, un stent bronquial ideal debe cumplir con muchas características, tales como ser biocompatible, en muchos casos bioabsorbible, radio opaco, que no genere reacción inflamatoria, tener características similares a las de la vía aérea para disminuir la acumulación de secreciones, entre otras. Por esta razón los stents bronquiales bioabsorbibles se presentan como una alternativa atractiva que ofrece ciertas ventajas, aunque aún se encuentran en desarrollo. El presente artículo busca describir los avances alrededor de los stents bronquiales bioabsorbibles y los factores que afectan la degradación de los polímeros con los cuales se han fabricado.


Abstract The causes that can lead to obstruction of the central airway can be of functional origin, due to obstruction of the light, organic parietal lesion or extrinsic compression; in turn, they can also be grouped into malignant and non-malignant obstructions. When an obstruction reduces more than 50% of the lumen of the airway causes debilitating symptoms and is an indication to implant a bronchial stent. The bronchial stents currently available are an incomplete solution for obstructions of the airways. On the other hand, an ideal bronchial stent must comply with many characteristics, such as being biocompatible, in many cases bioabsorbable, radio opaque, that does not generate an inflammatory reaction, having characteristics similar to those of the airway to decrease the accumulation of secretions, between others. For this reason, bioabsorbable bronchial stents are presented as an attractive alternative that offers certain advantages, although they are still in development. This article seeks to describe the advances around the bioabsorbable bronchial stents and the factors that affect the degradation of the polymers with which they have been manufactured.

6.
Parasit Vectors ; 4: 169, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21892937

RESUMO

BACKGROUND: Chagas disease is a neglected illness, with limited treatments, caused by the parasite Trypanosoma cruzi. Two drugs are prescribed to treat the disease, nifurtimox and benznidazole, which have been previously reported to have limited efficacy and the appearance of resistance by T. cruzi. Acquisition of drug-resistant phenotypes is a complex physiological process based on single or multiple changes of the genes involved, probably in its mechanisms of action. RESULTS: The differential genes expression of a sensitive Trypanosoma cruzi strain and its induced in vitro benznidazole-resistant phenotypes was studied. The stepwise increasing concentration of BZ in the parental strain generated five different resistant populations assessed by the IC(50) ranging from 10.49 to 93.7 µM. The resistant populations maintained their phenotype when the BZ was depleted from the culture for many passages. Additionally, the benznidazole-resistant phenotypes presented a cross-resistance to nifurtimox but not to G418 sulfate. On the other hand, four of the five phenotypes resistant to different concentrations of drugs had different expression levels for the 12 genes evaluated by real-time PCR. However, in the most resistant phenotype (TcR5x), the levels of mRNA from these 12 genes and seven more were similar to the parental strain but not for NTR and OYE genes, which were down-regulated and over-expressed, respectively. The number of copies for these two genes was evaluated for the parental strain and the TcR5x phenotype, revealing that the NTR gene had lost a copy in this last phenotype. No changes were found in the enzyme activity of CPR and SOD in the most resistant population. Finally, there was no variability of genetic profiles among all the parasite populations evaluated by performing low-stringency single-specific primer PCR (LSSP-PCR) and random amplified polymorphic DNA RAPD techniques, indicating that no clonal selection or drastic genetic changes had occurred for the exposure to BZ. CONCLUSION: Here, we propose NTR as the major marker of the appearance of resistance to BZ.


Assuntos
Doença de Chagas/parasitologia , Resistência a Medicamentos , Expressão Gênica/efeitos dos fármacos , Nitroimidazóis/farmacologia , Nitrorredutases/genética , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Doença de Chagas/tratamento farmacológico , Humanos , Família Multigênica , Nitrorredutases/metabolismo , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética
7.
Clin Appl Thromb Hemost ; 16(1): 83-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19567378

RESUMO

Warfarin is the most prescribed oral anticoagulant worldwide. Because of the complexity of warfarin therapy, we attempted to dissect genetic from bioenvironmental factors influencing warfarin dose responses in individuals of a genetic isolate of Hispanic ancestry. A total of 191 patients with standard values of international normalized ratio were recruited. Three groups with a significantly different warfarin dose response were identified, that is, sensitive (2.28 +/- 0.50 mg/d), intermediate (4.2 +/- 0.76 mg/d), and resistant (7.40 +/- 1.54 mg/d; Tukey test, P < .001). Age had a significant inverse correlation with warfarin dose (P < .001; effective dose diminished 0.56 mg/d/decade). Required doses were higher for individuals with CYP2C9 variants containing the allele *1 compared to those individuals with variants composed of other alleles (P = .006). Similarly, individuals with VKORC1-1639GG and VKORC1-1639GA genotypes also required higher doses compared to the AA genotype (P < .001). Evaluation of potential gene-gene interactions between CYP2C9 and VKORC1 polymorphisms showed significant differences in dosing for CYP2C9 genotypes within the VKORC1-1639G/A subgroup (P = .013). A stepwise multivariate linear regression analysis showed that 38.2% of the warfarin dose response variance was accounted for by a model involving age (20.9%), VKORC1-1639G/A (11.3%), and CYP2C9*1, *2, and *3 variants (7.1%). These results corroborate previous findings on warfarin pharmacogenetics and define a contrastable gene-bioenvironment interaction model suited to be used in Hispanic populations.


Assuntos
Anticoagulantes/administração & dosagem , Hidrocarboneto de Aril Hidroxilases/genética , Oxigenases de Função Mista/genética , Trombose , Varfarina/administração & dosagem , Adulto , Idoso , Anticoagulantes/farmacocinética , Colômbia/epidemiologia , Citocromo P-450 CYP2C9 , Relação Dose-Resposta a Droga , Etnicidade/estatística & dados numéricos , Feminino , Frequência do Gene , Variação Genética , Genótipo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Trombose/etnologia , Trombose/genética , Trombose/prevenção & controle , Vitamina K Epóxido Redutases , Varfarina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA