Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 408: 131224, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111400

RESUMO

Lactic acid has been applied as a precursor for hydrogen (H2) production from substrates rich in lactic acid bacteria (LAB), focusing on microbial interactions between producing and consuming LAB tested with model substrates. Therefore, this study evaluated the effect of single and combined lactic acid-consuming bacteria on mesophilic H2 production in batch tests from lactic acid from fermented food waste (FW). Megasphaera elsdenii, Clostridium beijerinckii, and Clostridium butyricum were inoculated at different ratios (v/v). Additionally, thermal pretreated sludge (TPS) was added to the strain mixtures. The highest production was obtained with M. elsdenii, C. beijerinckii, and C. butyricum (17:66:17 ratio), obtaining 1629.0 mL/Lreactor. The optimal mixture (68:32:0 of M. elsdenii and C. beijerinckii) enriched with TPS reached 1739.3 ± 98.6 mL H2/Lreactor, consuming 98 % of lactic acid added. M. elsdenii and Clostridium strains enhance H2 production from lactic acid as they persist in a microbial community initially dominated by LAB.


Assuntos
Perda e Desperdício de Alimentos , Hidrogênio , Ácido Láctico , Reatores Biológicos , Clostridium/metabolismo , Fermentação , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Esgotos/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36751723

RESUMO

Antimony (Sb) is a toxic and carcinogenic metalloid that can be present in contaminated water generated by mining operations and other industrial activities. The toxicity of Sb (III) and Sb (V) to aerobic microorganisms remains limited and unexplored for anaerobic microorganisms involved in hydrogen (H2) and methane (CH4) production. This study aimed to evaluate the toxicity of Sb (III) and Sb (V) upon aerobic and anaerobic microorganisms important in biological wastewater treatment systems. Sb (III) was more toxic than Sb (V) independently of the test and environment evaluated. Under aerobic conditions maintained in the Microtox assay, Sb (V) was not toxic to Allivibrio fischeri at concentrations as high as 500 mg/L, whereas Sb (III) caused just over 50% inhibition at concentration of 250 mg/L after 5 min of exposure. In the respirometry test, for the specific oxygen uptake rate, the concentrations of Sb (III) and Sb (V) displaying 50% inhibition were 0.09 and 56.2 mg/L, respectively. Under anaerobic conditions, exposure to Sb (III) and Sb (V) led to a decrease in microorganisms activity of fermentative and methanogenic processes. The results confirm that the microbial toxicity of Sb depends on its speciation and Sb (III) displays a significantly higher inhibitory potential than Sb (V) in both aerobic and anaerobic environments.


Assuntos
Antimônio , Antimônio/toxicidade , Anaerobiose
3.
Water Sci Technol ; 83(12): 3033-3040, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34185697

RESUMO

The study aimed to identify interspecies interactions within a native microbial community present in a hydrogen-producing bioreactor fed with two wheat straw cultivars. The relationships between the microbial community members were studied building a canonical correspondence analysis and corroborated through in vitro assays. The results showed that the bioreactor reached a stable hydrogen production of ca. 86 mL/kg·d in which the cultivar change did not affect the average performance. Lactobacillus and Clostridium dominated throughout the whole operation period where butyric acid was the main metabolite. A canonical correspondence analysis correlated positively Lactobacillus with hydrogen productivity and hydrogen-producing bacteria like Clostridium and Ruminococaceae. Agar diffusion testing of isolated strains confirmed that Lactobacillus inhibited the growth of Enterococcus, but not of Clostridium. We suggest that the positive interaction between Lactobacillus and Clostridium is generated by a division of labor for degrading the lignocellulosic substrate in which Lactobacillus produces lactic acid from the sugar fermentation while Clostridium quickly uses this lactic acid to produce hydrogen and butyric acid. The significance of this work lies in the fact that different methodological approaches confirm a positive association in the duo Lactobacillus-Clostridium in a bioreactor with stable hydrogen production from a complex substrate.


Assuntos
Clostridium , Lactobacillus , Clostridium/metabolismo , Fermentação , Hidrogênio , Lactobacillus/metabolismo , Lignina
4.
Braz J Microbiol ; 51(2): 701-709, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319044

RESUMO

This study proposes the treatment and valorization of denim textile effluents through a fermentative hydrogen production process. Also, the study presents the decolorizing capabilities of bacterial and fungal isolates obtained from the fermented textile effluents. The maximum hydrogen production rate was 0.23 L H2/L-d, achieving at the same time color removal. A total of thirty-five bacteria and one fungal isolate were obtained from the fermented effluents and screened for their abilities to decolorize indigo dye, used as a model molecule. From them, isolates identified as Bacillus BT5, Bacillus BT9, Lactobacillus BT20, Lysinibacillus BT32, and Aspergillus H1T showed notable decolorizing capacities. Lactobacillus BT20 reached 90% of decolorization using glucose as co-substrate after 11 days of incubation producing colorless metabolites. Bacillus BT9 was able to utilize the indigo dye as the sole carbon source achieving a maximum decolorization of 60% after 9 days of incubation and producing a red-colored metabolite. In contrast, Bacillus BT5 and Lysinibacillus BT32 exhibited the lowest percentages of decolorization, barely 33% after 16 and 11 days of incubation, respectively. When Aspergillus H1T was grown in indigo dye supplemented with glucose, 96% of decolorization was reached after 2 days. This study demonstrates the valorization of denim textile effluents for the production of hydrogen via dark fermentation with concomitant color removal.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Hidrogênio/metabolismo , Índigo Carmim/metabolismo , Descoloração da Água , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , Cinética , Têxteis/análise , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA