Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2402: 243-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854049

RESUMO

The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.


Assuntos
Bicamadas Lipídicas , Ciclodextrinas , Microdomínios da Membrana , Microscopia de Força Atômica
2.
Sci Rep ; 11(1): 20946, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686741

RESUMO

Cell spreading and phagocytosis are notably regulated by small GTPases and GAP proteins. TBC1D10C is a dual inhibitory protein with GAP activity. In immune cells, TBC1D10C is one of the elements regulating lymphocyte activation. However, its specific role in macrophages remains unknown. Here, we show that TBC1D10C engages in functions dependent on the cytoskeleton and plasma membrane reorganization. Using ex vivo and in vitro assays, we found that elimination and overexpression of TBC1D10C modified the cytoskeletal architecture of macrophages by decreasing and increasing the spreading ability of these cells, respectively. In addition, TBC1D10C overexpression contributed to higher phagocytic activity against Burkholderia cenocepacia and to increased cell membrane tension. Furthermore, by performing in vitro and in silico analyses, we identified 27 TBC1D10C-interacting proteins, some of which were functionally classified as protein complexes involved in cytoskeletal dynamics. Interestingly, we identified one unreported TBC1D10C-intrinsically disordered region (IDR) with biological potential at the cytoskeleton level. Our results demonstrate that TBC1D10C shapes macrophage activity by inducing reorganization of the cytoskeleton-plasma membrane in cell spreading and phagocytosis. We anticipate our results will be the basis for further studies focused on TBC1D10C. For example, the specific molecular mechanism in Burkholderia cenocepacia phagocytosis and functional analysis of TBC1D10C-IDR are needed to further understand its role in health and disease.


Assuntos
Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais , Burkholderia cenocepacia/patogenicidade , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA