Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36981313

RESUMO

Gears are reliable and robust elements that are found in any power transmission system. However, gears are prone to present incipient faults, such as wear, since they are constantly subjected to contact forces. Due to gears playing a key role in many industrial processes, it is important to develop condition monitoring strategies that ensure the proper functioning of the related power transmission system and the overall components. In this regard, the data on entropy provide relevant information that allow us to identify and quantify the effect of different wear levels in gears. Therefore, in this work, we proposed the use of seven entropy-related features to perform the identification of different wear severities in a gearbox. The novelty of this proposal lies in the use of the entropy features to carry out a high-performance characterization of the available vibration signals that are acquired from experimental tests. The novelty of this proposal lies in the fusion of three different techniques: entropy features, linear discriminant analysis, and artificial neural networks to obtain a machine learning approach for improving the detection of different wear severities in gears compared to other reported methodologies. This situation is achieved due to the high-performance characterization of the available vibration signals that are acquired from experimental tests. Additionally, the entropy features are subjected to a feature space transformation by means of linear discriminant analysis to obtain a 2D representation and, finally, the set of features extracted by linear discriminant analysis are used as inputs of a neural network-based classifier to determine the severity of wear that is present in the gears. The proposed methodology is validated and compared with a conventional statistical approach to show the improvement in the classification.

2.
Sensors (Basel) ; 21(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198887

RESUMO

The study of power quality (PQ) has gained relevance over the years due to the increase in non-linear loads connected to the grid. Therefore, it is important to study the propagation of power quality disturbances (PQDs) to determine the propagation points in the grid, and their source of generation. Some papers in the state of the art perform the analysis of punctual measurements of a limited number of PQDs, some of them using high-cost commercial equipment. The proposed method is based upon a developed proprietary system, composed of a data logger FPGA with GPS, that allows the performance of synchronized measurements merged with the full parameterized PQD model, allowing the detection and tracking of disturbances propagating through the grid using wavelet transform (WT), fast Fourier transform (FFT), Hilbert-Huang transform (HHT), genetic algorithms (GAs), and particle swarm optimization (PSO). Measurements have been performed in an industrial installation, detecting the propagation of three PQDs: impulsive transients propagated at two locations in the grid, voltage fluctuation, and harmonic content propagated to all the locations. The results obtained show that the low-cost system and the developed methodology allow the detection of several PQDs, and track their propagation within a grid with 100% accuracy.


Assuntos
Algoritmos , Análise de Ondaletas , Análise de Fourier
3.
ISA Trans ; 80: 427-438, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30093102

RESUMO

This paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.

4.
ScientificWorldJournal ; 2014: 587671, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683346

RESUMO

This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.


Assuntos
Ruído , Processamento de Sinais Assistido por Computador , Algoritmos , Vibração
5.
Sensors (Basel) ; 13(5): 5507-27, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23698264

RESUMO

Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage (Vrms), peak voltage (Vpeak), crest factor (CF), and total harmonic distortion (THD) indices calculated through HT and Parseval's theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

6.
Sensors (Basel) ; 12(10): 14068-83, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23202036

RESUMO

The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

7.
Ultramicroscopy ; 115: 61-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22459119

RESUMO

Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA