Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816981

RESUMO

Bats host diverse coronaviruses, including taxa capable of pandemic spread in humans. We report the genome of an alphacoronavirus from a neotropical bat species (Desmodus rotundus) in Peru, which contributes to our understanding of bat coronaviruses in nature.

2.
Mol Ecol ; 29(1): 26-39, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561274

RESUMO

Viruses infect all forms of life and play critical roles as agents of disease, drivers of biochemical cycles and sources of genetic diversity for their hosts. Our understanding of viral diversity derives primarily from comparisons among host species, precluding insight into how intraspecific variation in host ecology affects viral communities or how predictable viral communities are across populations. Here we test spatial, demographic and environmental hypotheses explaining viral richness and community composition across populations of common vampire bats, which occur in diverse habitats of North, Central and South America. We demonstrate marked variation in viral communities that was not consistently predicted by a null model of declining community similarity with increasing spatial or genetic distances separating populations. We also find no evidence that larger bat colonies host greater viral diversity. Instead, viral diversity follows an elevational gradient, is enriched by juvenile-biased age structure, and declines with local anthropogenic food resources as measured by livestock density. Our results establish the value of linking the modern influx of metagenomic sequence data with comparative ecology, reveal that snapshot views of viral diversity are unlikely to be representative at the species level, and affirm existing ecological theories that link host ecology not only to single pathogen dynamics but also to viral communities.


Assuntos
Biodiversidade , Quirópteros/virologia , Doenças Transmissíveis/virologia , Ecologia , Metagenoma , Vírus/genética , Animais , Demografia , Ecossistema , Meio Ambiente , Humanos , Metagenômica , América do Sul
3.
Mol Ecol Resour ; 19(1): 128-143, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30240114

RESUMO

Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.


Assuntos
Quirópteros/virologia , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Manejo de Espécimes/métodos , Viroses/veterinária , Vírus/classificação , Vírus/genética , Animais , Biodiversidade , Fezes/virologia , Orofaringe/virologia , Peru , Viroses/virologia
4.
PLoS Negl Trop Dis ; 12(9): e0006786, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30260954

RESUMO

Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for which high infection prevalence has previously been reported. Phylogenetic analysis of the gltA gene for a subset of PCR-positive blood samples revealed sequences that were related to Bartonella described from vampire bats from Mexico, other Neotropical bat species, and streblid bat flies. Sequences associated with vampire bats clustered significantly by country but commonly spanned Central and South America, implying limited spatial structure. Stable and nonzero Bartonella prevalence between years supported endemic transmission in all sites. The odds of Bartonella infection for individual bats was unrelated to the intensity of bat flies ectoparasitism, but nearly all infected bats were infested, which precluded conclusive assessment of support for vector-borne transmission. While metagenomic sequencing found no strong evidence of Bartonella DNA in pooled bat saliva and fecal samples, we detected PCR positivity in individual saliva and feces, suggesting the potential for bacterial transmission through both direct contact (i.e., biting) and environmental (i.e., fecal) exposures. Further investigating the relative contributions of direct contact, environmental, and vector-borne transmission for bat Bartonella is an important next step to predict infection dynamics within bats and the risks of human and livestock exposures.


Assuntos
Infecções por Bartonella/veterinária , Bartonella/classificação , Bartonella/genética , Quirópteros/microbiologia , Transmissão de Doença Infecciosa , Variação Genética , Animais , Proteínas de Bactérias/genética , Bartonella/isolamento & purificação , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/transmissão , Belize , Sangue/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Glutamato Sintase/genética , Peru , Filogenia , Reação em Cadeia da Polimerase , Prevalência , Fatores de Risco , Saliva/microbiologia , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA