Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837757

RESUMO

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

2.
Basic Clin Pharmacol Toxicol ; 127(5): 389-404, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32524749

RESUMO

Alcoholic liver disease (ALD) may be attributed to multiple hits driving several alterations. The aim of this work was to determine whether nucleoredoxin (NXN) interacts with flightless-I (FLII)/actin complex and how this ternary complex is altered during ALD progression induced by different ALD models. ALD was recapitulated in C57BL/6J female mice by the well-known ALD Lieber-DeCarli model, and by an in vitro human co-culture system overexpressing NXN. The effects of ethanol and low doses of lipopolysaccharides (LPS) and diethylnitrosamine (DEN) were also evaluated in vivo as a first approach of an ALD multi-hit protocol. We demonstrated that NXN interacts with FLII/actin complex. This complex was differentially altered in ALD in vivo and in vitro, and NXN overexpression partially reverted this alteration. We also showed that ethanol, LPS and DEN synergistically induced liver structural disarrangement, steatosis and inflammatory infiltration accompanied by increased levels of proliferation (Ki67), ethanol metabolism (CYP2E1), hepatocarcinogenesis (GSTP1) and LPS-inducible (MYD88 and TLR4) markers. In summary, we provide evidence showing that NXN/FLII/actin complex is involved in ALD progression and that NXN might be involved in the regulation of FLII/actin-dependent cellular functions. Moreover, we present a promising first approach of a multi-hit protocol to better recapitulate ALD pathogenesis.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP2E1/metabolismo , Dietilnitrosamina/farmacologia , Etanol , Feminino , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA