Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830236

RESUMO

Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80-90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs.

2.
Vitam Horm ; 121: 169-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707134

RESUMO

The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.


Assuntos
Antioxidantes , Estresse do Retículo Endoplasmático , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo
3.
Metabolites ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295838

RESUMO

Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney's high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.

4.
Biomolecules ; 12(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35327574

RESUMO

Breast cancer (BC) is the most prevalent cancer and the one with the highest mortality among women worldwide. Although the molecular classification of BC has been a helpful tool for diagnosing and predicting the treatment of BC, developments are still being made to improve the diagnosis and find new therapeutic targets. Mitochondrial dysfunction is a crucial feature of cancer, which can be associated with cancer aggressiveness. Although the importance of mitochondrial dynamics in cancer is well recognized, its involvement in the mitochondrial function and bioenergetics context in BC molecular subtypes has been scantly explored. In this study, we combined mitochondrial function and bioenergetics experiments in MCF7 and MDA-MB-231 cell lines with statistical and bioinformatics analyses of the mitochondrial proteome of luminal A and basal-like tumors. We demonstrate that basal-like tumors exhibit a vicious cycle between mitochondrial fusion and fission; impaired but not completely inactive mitochondrial function; and the Warburg effect, associated with decreased oxidative phosphorylation (OXPHOS) complexes I and III. Together with the results obtained in the cell lines and the mitochondrial proteome analysis, two mitochondrial signatures were proposed: one signature reflecting alterations in mitochondrial functions and a second signature exclusively of OXPHOS, which allow us to distinguish between luminal A and basal-like tumors.


Assuntos
Neoplasias da Mama , Dinâmica Mitocondrial , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA