Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34443812

RESUMO

In this work, the Förster resonance energy transfer (FRET) between carbon dots (CDs) as energy donors and riboflavin (RF) as an energy acceptor was optimized and the main parameters that characterize the FRET process were determined. The results were successfully applied in the development of an ultrasensitive ratiometric fluorescent sensor for the selective and sensitive determination of RF in different beverages. Water-soluble CDs with a high quantum yield (54%) were synthesized by a facile and direct microwave-assisted technique. The CDs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Zeta potential, and UV-visible and molecular fluorescence spectroscopy. The study of the FRET process at two donor concentrations showed that the energy transfer efficiency decreases as the donor concentration increases, confirming its dependence on the acceptor:donor ratio in nanoparticle-based systems. The results show the importance of optimizing the FRET process conditions to improve the corresponding output signal. The variation in the ratiometric signal with the concentration of RF showed linearity in a concentration range of 0 to 11 µM with R2 = 0.9973 and a detection limit of 0.025 µM. The developed nanosensor showed good selectivity over other possible types of interference. The sensor was then applied for the determination of RF in beverage samples using the standard addition method with recoveries between 96% and 106%. Preliminary cytocompatibility tests carried out with breast cancer cells (MDA-MB-231) revealed the nanosensor to be cytocompatible in its working concentration regime, even after long incubation times with cells. Altogether, the developed RF determination method was found to be fast, low-cost, highly sensitive, and selective and can be extended to other samples of interest in the biological and food sectors. Moreover, thanks to its long-lasting cytocompatibility, the developed platform can also be envisaged for other applications of biological interest, such as intracellular sensing and staining for live cell microscopy.

2.
Nanoscale ; 11(6): 2829-2839, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30676594

RESUMO

Herein, a series of N-doped carbon nanotube (CNx) samples were obtained by modifying the synthesis temperature. Consequently, the proportion of graphitic nitrogen (Ngraph) in the samples was systematically increased as a function of temperature. This allowed evaluation of the role of the CNx graphitic nitrogen in the oxygen reduction reaction (ORR). A correlation between the Ngraph content and the ORR onset potential was observed, which shifted to more positive potentials with an increase in kinetic current density (jk); this showed that Ngraph played a significant catalytic role in the ORR. The samples with high Ngraph content favored the two-electron pathway for the ORR not only in basic media (pH = 13) but also in neutral media (pH = 7), representing an attractive alternative for wastewater remediation through the on-site generation of H2O2. The energetic calculations showed that the formation of H2O2 must be favorable in the presence of graphitic nitrogen sites. Finally, the performance of the buckypaper arrangement was evaluated, and the CNx buckypaper showed a higher cathodic current peak as compared to CNx traditional ink dispersions. Overall, this study not only sheds light on the role of Ngraph in the ORR, but also demonstrates that CNx buckypaper is an efficient 3D electrode for electrocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA