Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 29(15): 4670-8, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23517502

RESUMO

Here we explore the synthesis of alkanethiol-coated Ni NPs following the one-phase reaction method by Brust et al. The reduction of NiCl2 with NaBH4 in the presence of dodecanethiol (C12SH) yields a complex product that is difficult to identify as illustrated in the figure of merit. We synthesized Ni(II) dodecanethiolate (C12S) (without the addition of NaBH4) for comparison and performed an exhaustive characterization with TEM, HR-TEM, AFM, MFM, XPS, XRD, UV-vis, magnetism, and FT-IR. It is found that the organic coating is not quite a well-organized self-assembled monolayer (SAM) surrounding the Ni cluster as previously reported. XPS and XRD data show slight differences between both syntheses; however, Ni(II) thiolate appears to be more stable than reduced Ni when exposed to ambient air, indicating the propensity of metallic Ni to oxidize. It has been shown that irradiating with TEM electrons over various metal thiolates leads to nanoparticle formation. We irradiated over Ni(II) thiolate and observed no evidence of NP formation whereas irradiating a reduced Ni sample exhibited an ~3.0 nm nanoparticle diameter. Magnetism studies showed a difference between both samples, indicating ferromagnetic character for the reduced Ni sample. According to our results, the product of the synthesis is comprised of ultrasmall metallic clusters embedded in some form of Ni(II) C12S. In this work, we open a discussion of the chemical nature of the core and the shell in the synthesis of Ni NPs protected with organomercaptan molecules.


Assuntos
Nanopartículas Metálicas/química , Níquel/química , Compostos Organometálicos/síntese química , Alcanos/química , Estrutura Molecular , Compostos Organometálicos/química , Tamanho da Partícula , Compostos de Sulfidrila/química , Propriedades de Superfície
2.
Chemphyschem ; 10(2): 370-3, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19072961

RESUMO

Attractive combination: Biopolymer-modified nanoparticles which combine magnetic properties with biocompatibility are prepared and delivered following a three-step strategy (see figure): i) Adsorption of thiol-capped metal nanoparticles on graphite, ii) electrochemical modification, iii) potential-induced delivery of the modified nanoparticles to the electrolyte. Thiol-capped gold nanoparticles modified with iron-melanin are attractive because they combine magnetic properties and biocompatibility. The biopolymer modified nanoparticles are prepared and delivered following a three step strategy: i) adsorption of thiol-capped metal nanoparticles on graphite, ii) electrochemical deposition of melanin-iron, iii) potential-induced delivery of the modified nanoparticles to the electrolyte.


Assuntos
Ouro/química , Ferro/química , Melaninas/química , Nanopartículas Metálicas/química , Adsorção , Técnicas Biossensoriais , Eletroquímica/métodos , Magnetismo , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrometria por Raios X , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA