Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374557

RESUMO

This work reports on the fabrication of a novel two-layer material composed of a porous tantalum core and a dense Ti6Al4V (Ti64) shell by powder metallurgy. The porous core was obtained by mixing Ta particles and salt space-holders to create large pores, the green compact was obtained by pressing. The sintering behavior of the two-layer sample was studied by dilatometry. The interface bonding between the Ti64 and Ta layers was analyzed by SEM, and the pore characteristics were analyzed by computed microtomography. Images showed that two distinct layers were obtained with a bonding achieved by the solid-state diffusion of Ta particles into Ti64 during sintering. The formation of ß-Ti and α' martensitic phases confirmed the diffusion of Ta. The pore size distribution was in the size range of 80 to 500 µm, and a permeability value of 6 × 10-10 m2 was close to the trabecular bones one. The mechanical properties of the component were dominated mainly by the porous layer, and Young's modulus of 16 GPa was in the range of bones. Additionally, the density of this material (6 g/cm3) was much lower than the one of pure Ta, which helps to reduce the weight for the desired applications. These results indicate that structurally hybridized materials, also known as composites, with specific property profiles can improve the response to osseointegration for bone implant applications.

2.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233884

RESUMO

The present work is focused on developing Ti-xTa porous alloys processed by the space holder method and solid-state sintering. The volume fraction of Ta ranged between 20 and 30 wt.%. The sintering kinetics was evaluated by dilatometry tests. Sintered materials were characterized by SEM, XRD and computed tomography. Porosity features and permeability were determined from 3D images, and their mechanical properties were evaluated from microhardness and compression tests. The sintering behavior and the final microstructure are driven by the Ta diffusion into the Ti, slowing down the densification and modifying the transition temperature of α-to-ß. Due to ß-stabilization, martensite α' was obtained after sintering. Mechanical properties are reduced because of the ß-stabilization and pore addition, being predominantly the pore effect. Permeability depended on the pore characteristics, finding values close to the human bones. It was concluded that powder metallurgy generates highly TixTa alloys with a combination of α, ß and α' Ti phases as well as remaining Ta particles that are beneficial to improve the biocompatibility and osseointegration of such materials. Being the Ti25Ta40salt alloy the most suitable for orthopedic implants because of its characteristics and properties.

3.
Materials (Basel) ; 15(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079338

RESUMO

We present a novel Ti64/20Ag highly porous composite fabricated by powder metallurgy for biomedical applications and provide an insight into its microstructure and mechanical proprieties. In this work, the Ti64/20Ag highly porous composites were successfully fabricated by the space holder technique and consolidated by liquid phase sintering, at lower temperatures than the ones used for Ti64 materials. The sintering densification was evaluated by dilatometry tests and the microstructural characterization and porosity features were determined by scanning electron microscopy and computed microtomography. Permeability was estimated by numerical simulations on the 3D real microstructure. Mechanical properties were evaluated by simple compression tests. Densification was achieved by interparticle pore filling with liquid Ag that does not drain to the large pores, with additional densification due to the macroscopical deformation of large pores. Pore characteristics are closely linked to the pore formers and the permeability was highly increased by increasing the pore volume fraction, mainly because the connectivity was improved. As expected, with the increase in porosity, the mechanical properties decreased. These results permitted us to gain a greater understanding of the microstructure and to confirm that we developed a promising Ti64/20Ag composite, showing E of 7.4 GPa, σy of 123 MPa and permeability of 3.93 × 10-11 m2. Enhanced adaptability and antibacterial proprieties due to Ag were obtained for bone implant applications.

4.
J Mol Model ; 28(1): 23, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34970722

RESUMO

The effect of the oxidized functional groups on the structural, electronic, and reactivity properties of armchair graphene nanoribbons has been investigated in the framework of the density functional theory. The presence of functional groups near the edges stabilizes the oxidized graphene nanoribbons (OGNRs) more than substituting near the center. Overall, we found slight differences in the electronic properties of OGNRs concerning the pristine ones. The oxygen contribution of functional groups to the DOS is found in the conducting energy bands far from the Fermi level. Consequently, the semiconducting behavior is maintained after doping. Based on the reactivity of OGNRs, the most promising nanostructures were proposed as adsorbents studying the interaction and complexation with phenol, a critical pollutant removed mainly by hydrotreating processes (HDO) to produce bio-oil. Parallel and perpendicular phenol conformations were found towards the OGNRs in the optimized complexes driven by a physisorption process. These results provide significant insights for catalytic processes that use biomass derivatives containing phenolic compounds. The physisorption of streams containing pollutants on OGNRs could be adapted to new technological applications for the remotion of aromatic compounds under environmentally friendly operational conditions.

5.
Proc Natl Acad Sci U S A ; 115(50): 12654-12661, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30530677

RESUMO

Stories of mega-jams that last tens of hours or even days appear not only in fiction but also in reality. In this context, it is important to characterize the collapse of the network, defined as the transition from a characteristic travel time to orders of magnitude longer for the same distance traveled. In this multicity study, we unravel this complex phenomenon under various conditions of demand and translate it to the travel time of the individual drivers. First, we start with the current conditions, showing that there is a characteristic time τ that takes a representative group of commuters to arrive at their destinations once their maximum density has been reached. While this time differs from city to city, it can be explained by Γ, defined as the ratio of the vehicle miles traveled to the total vehicle distance the road network can support per hour. Modifying Γ can improve τ and directly inform planning and infrastructure interventions. In this study we focus on measuring the vulnerability of the system by increasing the volume of cars in the network, keeping the road capacity and the empirical spatial dynamics from origins to destinations unchanged. We identify three states of urban traffic, separated by two distinctive transitions. The first one describes the appearance of the first bottlenecks and the second one the collapse of the system. This collapse is marked by a given number of commuters in each city and it is formally characterized by a nonequilibrium phase transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA