Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1028, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229543

RESUMO

The Pantanal wetland harbours the second largest population of jaguars in the world. Alongside climate and land-use changes, the recent mega-fires in the Pantanal may pose a threat to the jaguars' long-term survival. To put these growing threats into perspective, we addressed the reach and intensity of fires that have affected jaguar conservation in the Pantanal ecoregion over the last 16 years. The 2020 fires were the most severe in the annual series, burned 31% of the Pantanal and affected 45% of the estimated jaguar population (87% of these in Brazil); 79% of the home range areas, and 54% of the protected areas within home ranges. Fires consumed core habitats and injured several jaguars, the Pantanal's apex predator. Displacement, hunger, dehydration, territorial defence, and lower fecundity are among the impacts that may affect the abundance of the species. These impacts are likely to affect other less mobile species and, therefore, the ecological stability of the region. A solution to prevent the recurrence of mega-fires lies in combating the anthropogenic causes that intensify drought conditions, such as implementing actions to protect springs, increasing the number and area of protected areas, regulating fire use, and allocating fire brigades before dry seasons.


Assuntos
Panthera , Incêndios Florestais , Animais , Ecossistema , Estações do Ano , Áreas Alagadas
3.
Ecology ; 98(11): 2979, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857166

RESUMO

Our understanding of mammal ecology has always been hindered by the difficulties of observing species in closed tropical forests. Camera trapping has become a major advance for monitoring terrestrial mammals in biodiversity rich ecosystems. Here we compiled one of the largest datasets of inventories of terrestrial mammal communities for the Neotropical region based on camera trapping studies. The dataset comprises 170 surveys of medium to large terrestrial mammals using camera traps conducted in 144 areas by 74 studies, covering six vegetation types of tropical and subtropical Atlantic Forest of South America (Brazil and Argentina), and present data on species composition and richness. The complete dataset comprises 53,438 independent records of 83 species of mammals, includes 10 species of marsupials, 15 rodents, 20 carnivores, eight ungulates and six armadillos. Species richness averaged 13 species (±6.07 SD) per site. Only six species occurred in more than 50% of the sites: the domestic dog Canis familiaris, crab-eating fox Cerdocyon thous, tayra Eira barbara, south American coati Nasua nasua, crab-eating raccoon Procyon cancrivorus and the nine-banded armadillo Dasypus novemcinctus. The information contained in this dataset can be used to understand macroecological patterns of biodiversity, community, and population structure, but also to evaluate the ecological consequences of fragmentation, defaunation, and trophic interactions.


Assuntos
Biodiversidade , Florestas , Mamíferos/fisiologia , Animais , Argentina , Brasil , Cães , Ecossistema
4.
J Anim Ecol ; 85(2): 516-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714244

RESUMO

Memory is among the most important and neglected forces that shapes animal movement patterns. Research on the movement-memory interface is crucial to understand how animals use spatial learning to navigate across space because memory-based navigation is directly linked to animals' space use and home range behaviour; however, because memory cannot be measured directly, it is difficult to account for. Here, we incorporated spatial memory into step selection functions (SSF) to understand how resource selection and spatial memory affect space use of feral hogs (Sus scrofa). We used Biased Random Bridge kernel estimates linked to residence time as a surrogate for memory and tested four conceptually different dynamic maps of spatial memory. We applied this memory-based SSF to a data set of hog relocations to evaluate the importance of land cover type, time of day and spatial memory on the animals' space use. Our approach has shown how the incorporation of spatial memory into animal movement models can improve estimates of habitat selection. Memory-based SSF provided a feasible way to gain insight into how animals use spatial learning to guide their movement decisions. We found that while hogs selected forested areas and water bodies and avoided grasslands during the day (primarily at noon), they had a strong tendency to select previously visited areas, mainly those held in recent memory. Beyond actively updating their memory with recent experiences, hogs were able to discriminate among spatial memories encoded at different circadian phases of their activity. Even though hogs are thought to have long memory retention, they likely relied on recent experiences because the local food resources are quickly depleted and slowly renewed, yielding an uncertain spatial distribution of resources.


Assuntos
Comportamento de Retorno ao Território Vital , Memória Espacial , Sus scrofa/fisiologia , Animais , Brasil , Ritmo Circadiano , Ecossistema , Feminino , Masculino , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA