Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(42): 59244-59255, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32748359

RESUMO

Organophosphate esters (OPEs) are substances globally used as flame retardants and plasticizers that have been detected in all environmental compartments. This study aimed to evaluate the occurrence and sources of ten OPEs in the Piracicaba River Basin (Brazil). Twelve sampling sites were selected in five rivers with different pollution sources; six sampling campaigns were performed encompassing dry and wet seasons. ΣOPEs ranged from 0.12 to 6.2 µg L-1; the levels in urban areas were higher than in rural and non-urban areas, but no overall tendency concerning the seasonal effect on OPEs concentrations was observed. Tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP) were the most abundant and frequently detected compounds. Nine OPEs were detected at higher concentrations in a site affected by effluents from textile industries. An acute toxicity test using Daphnia similis was performed for tris(2-ethylhexyl) phosphate (TEHP) for the calculation of a preliminary predicted no effect concentration (PNEC). The risk quotient (RQ) approach was applied and risk to aquatic environment related to TEHP levels was observed in areas adjacent to textile industries, but more toxicity studies are required for the determination of a more reliable PNEC.


Assuntos
Retardadores de Chama , Rios , Brasil , China , Monitoramento Ambiental , Ésteres , Retardadores de Chama/análise , Organofosfatos , Medição de Risco
2.
J Sep Sci ; 43(4): 748-755, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733022

RESUMO

Organophosphate esters used as flame retardants and plasticizers are ubiquitous contaminants in surface waters. Many studies indicate that these compounds are neurotoxicants, endocrine disruptors, and may affect reproduction and development of aquatic organisms. Thus, analytical methods that allow accurate quantification of these contaminants at environmentally relevant concentrations are desirable for risk assessment studies. In this study, a method based on solid phase extraction and gas chromatography coupled to mass spectrometry was developed for determination of organophosphate esters in river water extracts. Multivariate optimization was used to determine the best conditions for injection of larger volumes of sample in a Programmable Temperature Vaporization inlet. Furthermore, the matrix effect on the instrumental response was evaluated and compensated by association of extraction-blank-matched calibration and isotopically labeled focus standards. The method quantification limits ranged from 0.009 to 0.11 µg/L, staying below the predicted non-effect concentration for the aquatic compartment for all analytes, which is a requisite for using in risk assessment studies. The method was applied to freshwater samples collected in rivers from the Sao Paulo State, Brazil, and eight out of the ten target organophosphate esters were quantified, being tris(2-chloroisopropyl) phosphate and tris(phenyl) phosphate the most frequently detected compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA