Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 105(6): 1214-1225, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33772913

RESUMO

This study evaluated the effect of methionine supplementation, predation risk and their interaction on gut histology, whole-body cortisol levels, and intestinal gene expression in zebrafish. A total of 360 one-year-old animals were maintained under two environmental conditions and fed diets containing different methionine sources. Fish were fed either a control diet (CTL, without methionine supplementation), a diet supplemented with dl-methionine (DLM), or a diet supplemented with methionine dipeptide (MM) in the absence (AP) of a predator or in the presence of the predator (PP) for 48 h or 20 days. Predator-induced stress for 20 days resulted in lower body weight. Zebrafish fed methionine-supplemented diets had higher weight gain than control fish. We found no effect of predation stress or methionine supplementation on cortisol level. Predation risk and methionine supplementation showed no interaction effect on dipeptide transporter gene expression. After 48 h of predation pressure, zebrafish had higher mRNA expression of SOD2, CAT and GPX1 in the gut. After 20 days of exposure to the predator, zebrafish fed methionine-supplemented diets had lower expression of GPX1, SOD2 and CAT than those diet CTL. Methionine dipeptide and free methionine supplementation improved growth, intestinal health and survivability of zebrafish both conditions.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Metionina , Peixe-Zebra , Ração Animal/análise , Animais , Catalase/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Dipeptídeos , Glutationa Peroxidase/metabolismo , Intestinos , Metionina/administração & dosagem , Transportador 1 de Peptídeos/metabolismo , Comportamento Predatório , Superóxido Dismutase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Glutationa Peroxidase GPX1
2.
Rev. Bras. Zootec. (Online) ; 48: e20180198, 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1510167

RESUMO

A 10-week study was conducted to evaluate the effect of feed allowance and graded levels of dietary methionine (Met) on growth performance of Litopenaeus vannamei. Juvenile shrimp of 1.83±0.14 g were stocked in 42 outdoor green-water tanks of 1 m3 under 120 shrimp m−2. Animals were fed under two feed allowances, regular and 30% in excess. Five diets with 30 g kg−1 fishmeal were designed to contain 318±2 g kg−1 crude protein and a minimum amount of protein-bound Met. To achieve graded levels of dietary Met, a control diet with 4.6 g kg−1 Met or 8.9 g kg−1 methionine + cysteine (M+C) was supplemented with 1.2, 2.2, 3.2, and 4.2 g kg−1 of DL-methionyl-DL-methionine to result in total dietary Met of 5.6, 6.9, 7.9, and 9.2 g kg−1 (10.0, 11.2, 12.1, and 13.5 g kg−1 M+C, respectively). A final survival of 86.5±3.6% was reached with no significant influence from feed allowance or dietary Met. Feed inputs significantly affected apparent feed intake, weekly shrimp growth, final body weight (BW), and gained yield. Larger meals and a higher dietary Met had no impact on feed conversion ratio. There was a significant interaction between feed allowance and Met over shrimp BW. By feeding animals in excess, BW was enhanced at 6.9 g kg−1 Met. A dietary Met of 7.9 g kg−1 was required to achieve a maximum BW under a regular feed allowance. Thus, shrimp required less amounts of dietary Met to maximize BW when higher feed inputs were delivered. Our findings demonstrate a sparing effect of dietary Met for L. vannamei when a higher feed allowance is adopted. Shrimp farmers should consider adjusting feed allowance to dietary Met to maximize shrimp growth performance and yield.(AU)


Assuntos
Animais , Palaemonidae/fisiologia , Ração Animal/análise , Metionina/administração & dosagem
3.
PLoS One ; 10(2): e0115821, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714089

RESUMO

The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1-21 and 22-42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that methionine supplementation could induce protein deposition because methionine increased the expression of genes related to protein synthesis and decreased the expression of genes related to protein breakdown.


Assuntos
Galinhas/genética , Galinhas/metabolismo , Suplementos Nutricionais , Regulação da Expressão Gênica , Temperatura Alta , Metionina/metabolismo , Estresse Fisiológico/genética , Animais , Perfilação da Expressão Gênica , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA