Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 49(3): 2328-39, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19850139

RESUMO

There are few studies on the neuroanatomical determinants of EEG spectral properties that would explain its substantial inter-individual variability in spite of decades of biophysical modeling that predicts this type of relationship. An exception is the negative relation between head size and the spectral position of the alpha peak (P(alpha)) reported in Nunez et al. (1978)-proposed as evidence of the influence of global boundary conditions on slightly damped neocortical waves. Here, we attempt to reexamine this finding by computing the correlations of occipital P(alpha) with various measures of head size and cortical surface area, for 222 subjects from the EEG/MRI database of the Cuban Human Brain Mapping Project. No relation is found (p>0.05). On the other hand, biophysical models also predict that white matter architecture, determining time delays and connectivities, could have an important influence on P(alpha). This led us to explore relations between P(alpha) and DTI fractional anisotropy by means of a multivariate penalized regression. Clusters of voxels with highly significant relations were found. These were positive within the Posterior and Superior Corona Radiata for both hemispheres, supporting biophysical theories predicting that the period of cortico-thalamocortical cycles might be modulating the alpha frequency. Posterior commissural fibers of the Corpus Callosum present the strongest relationships, negative in the inferior part (Splenium), connecting the inferior occipital lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital cortices. We found that white matter architecture rather than neocortical area determines the dynamics of the alpha rhythm.


Assuntos
Ritmo alfa , Mapeamento Encefálico , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Sinais Assistido por Computador
2.
J Neurosci Methods ; 185(1): 125-32, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19747944

RESUMO

We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual's MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.


Assuntos
Simulação por Computador , Eletroencefalografia/métodos , Cabeça/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Modelos Anatômicos , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Feminino , Cabeça/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Grupos Raciais , Valores de Referência , Caracteres Sexuais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA