Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 20201, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214608

RESUMO

Nacre is the main component of the pearl oyster shells and it is synthesized by specialized soluble and insoluble shell matrix proteins. Insoluble proteins from the decalcification of the shell are the less studied proteins due to the technical problems to isolate them from the organic matrix. In this study, an insoluble shell matrix protein from Pinctada mazatlanica, pearlin (Pmaz-pearlin), was successfully cloned from the mantle tissue, and the native protein isolated from the shell was functionally characterized. The full coding sequence of Pmaz-pearlin mRNA consists of 423 base pairs, which encode to a 16.3 kDa pearlin. Analysis of the deduced amino acid sequence revealed that Pmaz-pearlin contained four acidic regions, an NG repeat domain, and Cys conserved residues, the latter potentially forms four disulfide bridges which might stabilize the protein structure. The isolated protein from the shell is a glycoprotein of ~ 16.74 kDa which can produce aragonite and calcite crystals in vitro. Our results show that Pmaz-pearlin is a well-conserved protein involved in nacre layer growth, which produces calcite crystals in the presence of CaCl2, aragonite crystal polymorphs with a hexagonal structure in the presence of MgCl2, and needle-like crystal structure polymorphs in the presence of CaCO3 The identity of the crystals was confirmed using RAMAN analyses.


Assuntos
Cristalização , Nácar/metabolismo , Pinctada/metabolismo , Animais , Espectrometria de Massas , Análise Espectral Raman
2.
PeerJ ; 7: e7212, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293836

RESUMO

Mollusk shell mineralization is a tightly controlled process made by shell matrix proteins (SMPs). However, the study of SMPs has been limited to a few model species. In this study, the N66 mRNA of the pearl oyster Pinctada mazatlanica was cloned and functionally characterized. The full sequence of the N66 mRNA comprises 1,766 base pairs, and encodes one N66 protein. A sequence analysis revealed that N66 contained two carbonic anhydrase (CA) domains, a NG domain and several glycosylation sites. The sequence showed similarity to the CA VII but also with its homolog protein nacrein. The native N66 protein was isolated from the shell and identified by mass spectrometry, the peptide sequence matched to the nucleotide sequence obtained. Native N66 is a glycoprotein with a molecular mass of 60-66 kDa which displays CA activity and calcium carbonate precipitation ability in presence of different salts. Also, a recombinant form of N66 was produced in Escherichia coli, and functionally characterized. The recombinant N66 displayed higher CA activity and crystallization capability than the native N66, suggesting that the lack of posttranslational modifications in the recombinant N66 might modulate its activity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31129291

RESUMO

Mollusk biomineralization is a process controlled by a complex interplay of proteins, ions and external regulators. In spite of several studies, there is a lack of knowledge of who (molecules involved), how (mechanism) and why (evolution and adaptation) mollusk are designed as we know them. In this study, a shell matrix protein, N66, has been purified and characterized biochemically from the shell of Pteria sterna. Two protein bands with carbohydrates associated were separated with a molecular weight of ~60 and 64 kDa. It has carbonic anhydrase activity and it is able to form crystal polymorphs of calcium carbonate in vitro. The mRNA N66 was obtained from the mantle tissue of Pteria sterna and the deduced amino acid sequence contained a carbonic anhydrase (CA) domain and a Asn/Gly-rich domain (aa243-439). The CA domain contained three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu166-Thr525), being thus similar to the human isoform hCAVII. Also, to test whether the posttranslational modifications present on the native N66 affects the CA activity and its crystallization capability in vitro, a recombinant N66 was overexpressed in Escherichia coli and functionally characterized. Our results show that recombinant N66 has higher CA activity and produce larger size crystals in vitro than the native N66 protein, suggesting that intrinsic properties of the native N66, such as glycosylations and/or phosphorylations, might regulate its activity.


Assuntos
Exoesqueleto/metabolismo , Anidrases Carbônicas/isolamento & purificação , Anidrases Carbônicas/metabolismo , Pinctada/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomineralização , Anidrases Carbônicas/genética , Cristalização , DNA Complementar/genética , Microscopia Eletrônica de Varredura , Filogenia , Pinctada/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA