RESUMO
Lanthanoids in the southern Gulf of California (GC) seawater are reported for the first time. Lanthanoids showed differences between peninsular and continental coastline, coastal or marine ecosystems, and dry or rainy season. The chondrite-normalized values showed high variability but followed a same pattern. Light lanthanoids were more enriched than heavy ones. Values of ∑Ln and La/Lu were higher in continental than peninsular coastlines, coastal than adjacent marine ecosystems, and rainy than dry season. Differences were related to the lithology and perturbation degree of the ecosystem watersheds. The chondrite-normalized patterns are typical of geological origin. Slightly negative Ce anomaly was related to the low levels of oxygen in water for the oxidation of Ce (III) to Ce (IV) and its posterior scavenging. Negative δEu anomaly is explained by an influx of fluvial and eolian materials from the upper continental, while a positive Eu anomaly related to hydrothermal vent inputs was non-evidenced.
Assuntos
Ecossistema , Elementos da Série dos Lantanídeos , Chuva , Estações do Ano , Água do MarRESUMO
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7±34.6 mg m(-2)) and during the rainy season for macroalgae at site 4 (296.0±82.4 g m(-2)). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m(-2) and the macroalgal biomass between 1 and 296.0 g m(-2). The bulk biomass (phytoplankton+macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.