Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891090

RESUMO

The accurate recognition of activities is fundamental for following up on the health progress of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse out the disease evolution, and consequently provide effective and timely assistance. However, this task is affected by uncertainties derived from the differences in smart home configurations and the way in which each person undertakes the ADLs. One adjacent pathway is to train a supervised classification algorithm using large-sized datasets; nonetheless, obtaining real-world data is costly and characterized by a challenging recruiting research process. The resulting activity data is then small and may not capture each person's intrinsic properties. Simulation approaches have risen as an alternative efficient choice, but synthetic data can be significantly dissimilar compared to real data. Hence, this paper proposes the application of Partial Least Squares Regression (PLSR) to approximate the real activity duration of various ADLs based on synthetic observations. First, the real activity duration of each ADL is initially contrasted with the one derived from an intelligent environment simulator. Following this, different PLSR models were evaluated for estimating real activity duration based on synthetic variables. A case study including eight ADLs was considered to validate the proposed approach. The results revealed that simulated and real observations are significantly different in some ADLs (p-value < 0.05), nevertheless synthetic variables can be further modified to predict the real activity duration with high accuracy (R2(pred)>90%).


Assuntos
Atividades Cotidianas , Demência , Algoritmos , Demência/diagnóstico , Humanos , Análise dos Mínimos Quadrados
2.
Artigo em Inglês | MEDLINE | ID: mdl-35162153

RESUMO

The classifier selection problem in Assistive Technology Adoption refers to selecting the classification algorithms that have the best performance in predicting the adoption of technology, and is often addressed through measuring different single performance indicators. Satisfactory classifier selection can help in reducing time and costs involved in the technology adoption process. As there are multiple criteria from different domains and several candidate classification algorithms, the classifier selection process is now a problem that can be addressed using Multiple-Criteria Decision-Making (MCDM) methods. This paper proposes a novel approach to address the classifier selection problem by integrating Intuitionistic Fuzzy Sets (IFS), Decision Making Trial and Evaluation Laboratory (DEMATEL), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The step-by-step procedure behind this application is as follows. First, IF-DEMATEL was used for estimating the criteria and sub-criteria weights considering uncertainty. This method was also employed to evaluate the interrelations among classifier selection criteria. Finally, a modified TOPSIS was applied to generate an overall suitability index per classifier so that the most effective ones can be selected. The proposed approach was validated using a real-world case study concerning the adoption of a mobile-based reminding solution by People with Dementia (PwD). The outputs allow public health managers to accurately identify whether PwD can adopt an assistive technology which results in (i) reduced cost overruns due to wrong classification, (ii) improved quality of life of adopters, and (iii) rapid deployment of intervention alternatives for non-adopters.


Assuntos
Demência , Tecnologia Assistiva , Tomada de Decisões , Humanos , Qualidade de Vida , Incerteza
3.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230844

RESUMO

Human activity recognition (HAR) is a popular field of study. The outcomes of the projects in this area have the potential to impact on the quality of life of people with conditions such as dementia. HAR is focused primarily on applying machine learning classifiers on data from low level sensors such as accelerometers. The performance of these classifiers can be improved through an adequate training process. In order to improve the training process, multivariate outlier detection was used in order to improve the quality of data in the training set and, subsequently, performance of the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers. In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.


Assuntos
Técnicas Biossensoriais , Atividades Humanas , Monitorização Fisiológica , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
4.
Sensors (Basel) ; 19(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295850

RESUMO

Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision.


Assuntos
Atenção à Saúde/métodos , Dedos/fisiologia , Gestos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA