Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci, v. 21, n. 19, 7377, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3272

RESUMO

The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29074260

RESUMO

While some US populations of the Mohave rattlesnake (Crotalus scutulatus scutulatus) are infamous for being potently neurotoxic, the Mexican subspecies C. s. salvini (Huamantlan rattlesnake) has been largely unstudied beyond crude lethality testing upon mice. In this study we show that at least some populations of this snake are as potently neurotoxic as its northern cousin. Testing of the Mexican antivenom Antivipmyn showed a complete lack of neutralisation for the neurotoxic effects of C. s. salvini venom, while the neurotoxic effects of the US subspecies C. s. scutulatus were time-delayed but ultimately not eliminated. These results document unrecognised potent neurological effects of a Mexican snake and highlight the medical importance of this subspecies, a finding augmented by the ineffectiveness of the Antivipmyn antivenom. These results also influence our understanding of the venom evolution of Crotalus scutulatus, suggesting that neurotoxicity is the ancestral feature of this species, with the US populations which lack neurotoxicity being derived states.


Assuntos
Venenos de Crotalídeos/metabolismo , Crotalus/fisiologia , Evolução Molecular , Músculo Esquelético/efeitos dos fármacos , Bloqueadores Neuromusculares/metabolismo , Neurotoxinas/metabolismo , Proteínas de Répteis/metabolismo , Animais , Antivenenos/farmacologia , Arizona , Galinhas , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/química , Venenos de Crotalídeos/toxicidade , Crotalus/crescimento & desenvolvimento , Clima Desértico , Feminino , Técnicas In Vitro , Dose Letal Mediana , Masculino , México , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/inervação , Bloqueadores Neuromusculares/antagonistas & inibidores , Bloqueadores Neuromusculares/química , Bloqueadores Neuromusculares/toxicidade , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/química , Neurotoxinas/toxicidade , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Fosfolipases A2/toxicidade , Proteômica/métodos , Proteínas de Répteis/antagonistas & inibidores , Proteínas de Répteis/química , Proteínas de Répteis/toxicidade , Especificidade da Espécie , Especificidade por Substrato , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA