Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 36(1): e2915, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587517

RESUMO

Perfusion operation mode remains the preferred platform for production of labile biopharmaceuticals (e.g., blood factors) and is also being increasingly adopted for production of stable products (e.g., monoclonal antibodies). Regardless of the product, process development typically aims at maximizing production capacity. In this work, we investigated the impact of perfusion cultivation conditions on process productivity for production of human factor VIII (FVIII). Recombinant CHO cells were cultivated in bioreactors coupled to inclined settlers and the effects of reducing the temperature to 31°C with or without valeric acid (VA) supplementation were evaluated. Increases in cell specific productivity (qp ) up to 2.4-fold (FVIII concentration) and up to 3.0-fold (FVIII biological activity) were obtained at 31°C with VA compared to the control at 37°C. Biological activity is the most important quality attribute for FVIII and was positively affected by mild hypothermia in combination with the chemical inducer. The low temperature conditions resulted in enhanced product transcript levels, suggesting that the higher qp is related to the increased mRNA levels. Furthermore, a high-producer subclone was evaluated under the perfusion conditions optimized for the parental clone (31°C with VA), yielding increases in qp of 6-fold and 15-fold compared to the parental clone cultivated under the same condition and at 37°C, respectively. The proposed perfusion strategy enables increased product formation without increasing production costs, being potentially applicable to perfusion production of other CHO-derived biopharmaceuticals. To the best of our knowledge, this is the first report showing the benefits of perfusion combining mild hypothermia with VA supplementation.


Assuntos
Fator VIII/biossíntese , Ácidos Pentanoicos/metabolismo , Perfusão , Temperatura , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Células Cultivadas , Cricetulus , Fator VIII/química , Humanos , Ácidos Pentanoicos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
2.
Biologicals ; 37(2): 108-18, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19059791

RESUMO

The recombinant G glycoprotein from the surface of the rabies virus (RVGP) is a promising candidate as a rabies vaccine component and also for diagnostic purposes. In this study, RVGP production by transfected Drosophila melanogaster S2 cells cultivated in a serum-free medium (supplemented IPL-41 medium) was carried out. The effects of pH and pO(2) were evaluated in batch culture in parallel spinner flasks. The use of a pH equal to 6.3 and a pO(2) of 40% air saturation resulted in the highest RVGP content. These conditions were also used in fed-batch mode, yielding a RVGP content level of 98g/10(7) cells. The main nutrients consumed were glucose, glutamine, asparagine, serine and proline and the major metabolites produced were alanine and ammonia, according to the metabolism studies performed. Since RVGP is a transmembrane protein, two different methods for protein recovery were assessed and compared. Detergent-based cell disruption showed to be more effective than mechanical disruption with glass beads for glycoprotein recovery.


Assuntos
Linhagem Celular , Meios de Cultura Livres de Soro/farmacologia , Drosophila melanogaster , Proteínas Recombinantes/metabolismo , Proteínas Virais de Fusão/isolamento & purificação , Proteínas Virais de Fusão/metabolismo , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular/metabolismo , Linhagem Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas Recombinantes/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA