Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Psychophysiology ; 59(12): e14134, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35780078

RESUMO

Knowledge about the relevance of the left inferior frontal gyrus (lIFG) and the left posterior superior temporal gyrus (lpSTG) in visual recognition of word categories is limited at present. tDCS is a non-invasive brain stimulation method that alters cortical activity and excitability, and thus might be a useful tool for delineating the specific impact of both areas on word recognition. The objective of this study was to explore whether the visual recognition process of verb categories is improved by a single tDCS session. lIFG and lpSTG areas were separately modulated by anodal tDCS to evaluate its effects on verbal recognition. Compared to sham stimulation, motor reaction times (RTs) were reduced after anodal tDCS over the lpSTG, and this effect was independent of the performing hand (right/left). These findings suggest that this region is involved in visual word recognition independently from the performing hand.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Idioma , Análise e Desempenho de Tarefas , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia
2.
Front Aging Neurosci ; 12: 189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714178

RESUMO

Background: Age is an important factor that impacts the variability of tDCS effects. Objective/Hypothesis: To compare effects of anodal (a)-tDCS over the left dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1) in adolescents, adults, and elderly on heat pain threshold (HPT; primary outcome) and the working memory (WM; secondary outcome). We hypothesized that the effect of tDCS on HPT and WM performance would be the largest in adolescents because their pre-frontal cortex is more prone to neuroplasticity. Methods: We included 30 healthy women within the age ranges of 15-16 (adolescents, n = 10), 30-40 (adults, n = 10), and 60-70 (elderly, n = 10) years. In this crossover single-blinded study, participants received three interventions applied over the DLPF and M1. The active stimulation intensity was two mA for 30 min. From 20 min of stimulation onset, the tDCS session was coupled with an online n-back task. The a-tDCS and sham were applied in a random sequence, with a washout time of a minimum 7 days between each trial. HPT was evaluated before and after stimulation. The WM performance with an n-back task was assessed after the tDCS session. Results: A Generalized Estimating Equation (GEE) model revealed a significant effect of the a-tDCS over the left DLPFC to reduce the HPT in adolescents compared with sham. It increased the pain perception significantly [a large effect size (ES) of 1.09)]. In the adults, a-tDCS over M1 enhanced the HPT significantly (a large ES of 1.25) compared to sham. No significant effect for HPT was found in the elderly. Response time for hits was reduced for a-tDCS over the DLPFC in adolescents, as compared to the other two age groups. Conclusions: These findings suggest that a-tDCS modulates pain perception and WM differentially according to age and target area of stimulation. In adolescents, anodal stimulation over the DLPFC increased the pain perception, while in adults, the stimulation over the M1 increased the pain threshold. Thus, they elucidate the impact of tDCS for different age groups and can help to define what is the appropriate intervention according to age in further clinical trials. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier: NCT04328545.

3.
Front Pharmacol ; 9: 716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018558

RESUMO

Background: Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has been studied as an adjunctive therapeutic agent for alcohol dependence. In a previous study, we showed that five consecutive sessions of tDCS applied bilaterally over the dorsolateral prefrontal cortex (dlPFC) reduced relapse to the use of alcohol in alcohol use disorder (AUD) outpatients. However, no changes on craving scores were observed. In the present study, we investigated if an extended number of sessions of the same intervention would reduce craving and relapses for alcohol use in AUD inpatients. Methods: Thus, a randomized, double-blind, sham-controlled, clinical trial with parallel arms was conducted (https://clinicaltrials.gov/ct2/show/NCT02091284). AUD patients from two private and one public clinics for treatment of drug dependence were randomly allocated to two groups: real tDCS (5 × 7 cm2, 2 mA, for 20 min, cathodal over the left dlPFC, and anodal over the right dlPFC) and sham-tDCS. Real or sham-tDCS was applied once a day, every other day, in a total of 10 sessions. Craving was monitored by a 5-item obsessive compulsive drinking scale once a week (one time before, three times during and once after brain stimulation) over about 5 weeks. Results: Craving scores progressively decreased over five measurements in both groups but were significantly reduced only in the real tDCS group after treatment. Corrected Hedges' within-group (initial and final) effect sizes of craving scores were of 0.3 for the sham-tDCS and of 1.1 for the real tDCS group. Effect size was 3-fold larger in the real tDCS group. In addition, the between-group analysis on craving score difference was nearly significant, and the effect size was 0.58, in favor for a larger effect in the real tDCS group when compared to sham-tDCS. Furthermore, in a 3-months follow-up after intervention, 72.2% of sham-tDCS group relapsed to the alcohol use whereas 72.7% of tDCS group were abstinent. Conclusions: Multiple sessions of bilateral prefrontal tDCS were well tolerated with no significant adverse events. Thus, extended repetitive bilateral tDCS over the dlPFC is a promising adjunctive clinical tool that could be used to reduce alcohol craving and relapses and facilitate alcoholism cessation.

4.
Cereb Cortex ; 27(1): 544-553, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26494801

RESUMO

The impact of nicotine (NIC) on plasticity is thought to be primarily determined via calcium channel properties of nicotinic receptor subtypes, and glutamatergic plasticity is likewise calcium-dependent. Therefore glutamatergic plasticity is likely modulated by the impact of nicotinic receptor-dependent neuronal calcium influx. We tested this hypothesis for transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity, which is abolished by NIC in nonsmokers. To reduce calcium influx under NIC, we blocked N-methyl-d-aspartate (NMDA) receptors. We applied anodal tDCS combined with 15 mg NIC patches and the NMDA-receptor antagonist dextromethorphan (DMO) in 3 different doses (50, 100, and 150 mg) or placebo medication. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor-evoked potential amplitudes after plasticity induction. NIC abolished anodal tDCS-induced motor cortex excitability enhancement, which was restituted under medium dosage of DMO. Low-dosage DMO did not affect the impact of NIC on tDCS-induced plasticity and high-dosage DMO abolished plasticity. For DMO alone, the low dosage had no effect, but medium and high dosages abolished tDCS-induced plasticity. These results enhance our knowledge about the proposed calcium-dependent impact of NIC on plasticity in humans and might be relevant for the development of novel nicotinic treatments for cognitive dysfunction.


Assuntos
Dextrometorfano/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Análise de Variância , Relação Dose-Resposta a Droga , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
5.
Dev Neurorehabil ; 20(3): 121-128, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26864140

RESUMO

OBJECTIVE: The aim of this study is to investigate the effects of transcranial direct current stimulation (tDCS) combined with cueing gait training (CGT) on functional mobility in patients with Parkinson´s disease (PD). METHODS: A pilot double-blind controlled, randomized clinical trial was conducted with 22 patients with PD assigned to the experimental (anodal tDCS plus CGT) and control group (sham tDCS plus CGT). The primary outcome (functional mobility) was assessed by 10-m walk test, cadence, stride length, and Timed Up and Go test. Motor impairment, bradykinesia, balance, and quality of life were analyzed as secondary outcomes. Minimal clinically important differences (MCIDs) were observed when assessing outcome data. RESULTS: Both groups demonstrated similar gains in all outcome measures, except for the stride length. The number of participants who showed MCID was similar between groups. CONCLUSION: The CGT provided many benefits to functional mobility, motor impairment, bradykinesia, balance, and quality of life. However, these effect magnitudes were not influenced by stimulation, but tDCS seems to prolong the effects of cueing therapy on functional mobility.


Assuntos
Sinais (Psicologia) , Terapia por Exercício/métodos , Transtornos Neurológicos da Marcha/reabilitação , Doença de Parkinson/reabilitação , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Idoso , Método Duplo-Cego , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Projetos Piloto , Resultado do Tratamento
6.
Int J Neuropsychopharmacol ; 17(11): 1793-803, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25008145

RESUMO

Preliminary small studies have shown that transcranial direct current stimulation (tDCS) reduces craving in alcoholic subjects. It is unclear whether tDCS also leads to changes in clinically meaningful outcomes for alcohol dependence in a properly powered phase II randomized clinical trial. We aimed to investigate whether repetitive tDCS changes the risk of alcohol use relapse in severe alcoholics from outpatient services. Thirty-five subjects were randomized to receive active bilateral [left cathodal/right anodal over the dorsolateral prefrontal cortex (dlPFC)] repetitive (five consecutive days) tDCS (2 mA, 35 cm2, two times daily stimulation for 13 min with a 20-min interval) or sham-tDCS. There were two dropouts before treatment. From 33 alcoholic subjects, 17 (mean age 45.5±8.9 s.d., 16 males) were randomized to sham and 16 (44±7.8 s.d., 16 males) to real tDCS treatment. By the end of the six months of follow-up, two subjects treated with sham (11.8%) and eight treated with real tDCS (50%) were still alcohol-abstinent [p=0.02, Long-rank (Mantel-Cox) Test, HR=0.35 (95% CI, 0.14-0.85)]. No differences with regard to changes on scores of craving, frontal function, global mental status, depressive or anxiety symptoms were observed between groups. However, subjects from the tDCS group improved with regard to their overall perception of quality of life (p=0.02), and increased their scores in the environment domain (p=0.04) after treatment. Bilateral tDCS over dlPFC reduces relapse probability in severe alcoholic subjects and results in improved perception of quality of life.


Assuntos
Alcoolismo/terapia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Escalas de Graduação Psiquiátrica , Resultado do Tratamento
7.
J Physiol Paris ; 107(6): 493-502, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891741

RESUMO

Transcranial Direct Current Stimulation (tDCS) has been shown to reduce acute substance craving in drug addicts, and improve cognition in neuropsychiatric patients. Here we aimed to explore further tDCS induced behavioral and neurophysiological modulation including assessment of relapse rate over a prolonged time course in alcoholism. We examined the effects of repeated anodal tDCS (2mA, 35 cm(2), 20min) over the left dorsolateral prefrontal cortex (DLPFC) on relapse to the use of alcohol in alcoholics from outpatient services, who received additional routine clinical treatment. Furthermore, event related potentials (ERPs), cognitive and frontal executive processes, craving, depressive and anxiety symptoms were obtained before and after treatment. From thirteen alcoholic subjects, seven were randomized to sham-tDCS and six to real tDCS treatment (once a week for five consecutive weeks). Depressive symptoms and craving were reduced to a larger extent in the tDCS group compared to the sham group (p=0.005 and p=0.015, respectively). On the other hand, active tDCS was able to block the increase in neural activation triggered by alcohol related and neutral cues in prefrontal cortex (PFC) as indexed by ERP as seen in the sham-tDCS group. Finally, there was a trend for increased change in executive function in the tDCS group compared to the sham-tDCS group (p=0.082), and, similarly, a trend for more relapses in the tDCS group compared to sham tDCS (four alcoholic subjects (66.7%) vs. one (14.3%), p=0.053).These results confirm the previous findings of tDCS effects on craving in alcoholism and also extend these findings as we showed also tDCS-related mood improvement. However, potential increase in relapse is possible; thus the clinical value of an increase in craving and improvement in depression and executive function needs to be carefully assessed in further studies; including investigation of optimal parameters of stimulation.


Assuntos
Alcoolismo/terapia , Comportamento Aditivo/terapia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Alcoolismo/diagnóstico , Alcoolismo/psicologia , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Estudos Prospectivos , Resultado do Tratamento
8.
Brain Stimul ; 5(3): 175-195, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22037126

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past 10 years, tDCS physiologic mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodologic, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. METHODS: We convened a workgroup of researchers in the field to review, discuss, and provide updates and key challenges of tDCS use in clinical research. MAIN FINDINGS/DISCUSSION: We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (1) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (2) methodologic aspects related to the clinical research of tDCS as divided according to study phase (ie, preclinical, phase I, phase II, and phase III studies); (3) ethical and regulatory concerns; and (4) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS.


Assuntos
Pesquisa Biomédica/tendências , Encefalopatias/fisiopatologia , Encefalopatias/terapia , Encéfalo/fisiopatologia , Previsões , Estimulação Magnética Transcraniana/tendências , Animais , Humanos
9.
Int J Neuropsychopharmacol ; 11(2): 249-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17559710

RESUMO

Preliminary findings suggest that transcranial direct current stimulation (tDCS) can have antidepressant effects. We sought to test this further in a parallel-group, double-blind clinical trial with 40 patients with major depression, medication-free randomized into three groups of treatment: anodal tDCS of the left dorsolateral prefrontal cortex (active group - 'DLPFC'); anodal tDCS of the occipital cortex (active control group - 'occipital') and sham tDCS (placebo control group - 'sham'). tDCS was applied for 10 sessions during a 2-wk period. Mood was evaluated by a blinded rater using the Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). The treatment was well tolerated with minimal side-effects that were distributed equally across all treatment groups. We found significantly larger reductions in depression scores after DLPFC tDCS [HDRS reduction of 40.4% (+/-25.8%)] compared to occipital [HDRS reduction of 21.3% (+/-12.9%)] and sham tDCS [HDRS reduction of 10.4% (+/-36.6%)]. The beneficial effects of tDCS in the DLPFC group persisted for 1 month after the end of treatment. Our findings support further investigation on the effects of this novel potential therapeutic approach - tDCS - for the treatment of major depression.


Assuntos
Transtorno Depressivo Maior/terapia , Terapia por Estimulação Elétrica , Córtex Pré-Frontal/fisiopatologia , Adulto , Afeto , Transtorno Depressivo Maior/fisiopatologia , Método Duplo-Cego , Terapia por Estimulação Elétrica/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Occipital/fisiopatologia , Escalas de Graduação Psiquiátrica , Fatores de Tempo , Resultado do Tratamento
10.
Restor Neurol Neurosci ; 25(2): 123-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17726271

RESUMO

PURPOSE: Recent evidence has suggested that a simple technique of noninvasive brain stimulation - transcranial direct current stimulation (tDCS) - is associated with a significant motor function improvement in stroke patients. METHODS: We tested the motor performance improvement in stroke patients following 4 weekly sessions of sham, anodal- and cathodal tDCS (experiment 1) and the effects of 5 consecutive daily sessions of cathodal tDCS (experiment 2). A blinded rater evaluated motor function using the Jebsen-Taylor Hand Function Test. RESULTS: There was a significant main effect of stimulation condition (p=0.009) in experiment 1. Furthermore there was a significant motor function improvement after either cathodal tDCS of the unaffected hemisphere (p=0.016) or anodal tDCS of the affected hemisphere (p=0.046) when compared to sham tDCS. There was no cumulative effect associated with weekly sessions of tDCS, however consecutive daily sessions of tDCS (experiment 2) were associated with a significant effect on time (p< 0.0001) that lasted for 2 weeks after treatment. CONCLUSIONS: The findings of our study support previous research showing that tDCS is significantly associated with motor function improvement in stroke patients; and support that consecutive daily sessions of tDCS might increase its behavioral effects. Because the technique of tDCS is simple, safe and non-expensive; our findings support further research on the use of this technique for the rehabilitation of patients with stroke.


Assuntos
Terapia por Estimulação Elétrica , Movimento , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA