Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 7703, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794445

RESUMO

During cortical development, neurons undergo polarization, oriented migration and layer-type differentiation. The biological and biochemical mechanisms underlying these processes are not completely understood. In neurons in culture we showed that IGF-1 receptor activation is important for growth cone assembly and axonal formation. However, the possible roles of the insulin like growth factor-1 receptor (IGF-1R) on neuronal differentiation and polarization in vivo in mammals have not yet been studied. Using in utero electroporation, we show here that the IGF-1R is essential for neocortical development. Neurons electroporated with a shRNA targeting IGF-1 receptor failed to migrate to the upper cortical layers and accumulated at the ventricular/subventricular zones. Co-electroporation with a constitutively active form of PI3K rescued migration. The change of the morphology from multipolar to bipolar cells was also attenuated. Cells lacking the IGF-1 receptor remain arrested as multipolar forming a highly disorganized tissue. The typical orientation of the migrating neurons with the Golgi complex oriented toward the cortical upper layers was also affected by electroporation with shRNA targeting IGF-1 receptor. Finally, cells electroporated with the shRNA targeting IGF-1 receptor were unable to form an axon and, therefore, neuron polarity was absent.


Assuntos
Movimento Celular/genética , Polaridade Celular/genética , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Organogênese/genética , Receptor IGF Tipo 1/genética , Animais , Axônios/metabolismo , Feminino , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
2.
Front Cell Neurosci ; 7: 194, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298236

RESUMO

Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

3.
PLoS One ; 8(1): e54462, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349896

RESUMO

Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the ßgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both ßgc and the ß subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, ßgc was localised to distal regions and leading growth cones in RGC. IGF-1R-ßgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal regeneration following trauma.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Receptor IGF Tipo 1/metabolismo , Regeneração , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Cromonas/farmacologia , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Morfolinas/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA