Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35564055

RESUMO

Whey beverages that were enriched with fructooligosaccharides (FOS) and xylooligosaccharides (XOS) were used for carrying Foeniculum vulgare extract that was obtained by the supercritical CO2 extraction technique to produce novel functional products. Fennel-based whey beverages were subjected to thermosonication processing (100, 200, and 300 W at 60 °C for 15 min) to verify the performance of the dairy colloidal system for protecting the bioactive fennel compounds. The impacts of thermosonication processing on the quality attributes of the functional whey beverages were examined according to their droplet size distribution, microstructure, kinetic stability, color parameters, browning index, total phenolic content (TPC), and antioxidant capacity by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-Azino-bis-(3-ethylbenzothiazoline)-6-sulphonic acid) assays. The enrichment of the whey beverages with FOS and XOS did not affect their kinetic stability. However, the addition of prebiotic dietary fibers contributed to reducing the mean droplet size due to the formation of whey protein-FOS/XOS conjugates. The thermosonication treatments did not promote color changes that were discernible to the human eye. On the other hand, the thermosonication processing reduced the kinetic stability of the beverages. Overall, the colloidal dairy systems preserved the antioxidant capacity of the fennel seed extract, regardless of thermosonication treatment intensity. The whey beverages enriched with FOS and XOS proved to be effective carrying matrices for protecting the lipophilic bioactive fennel compounds.

2.
Carbohydr Polym ; 270: 118374, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364618

RESUMO

Inulin-type fructans with different degrees of polymerization (DPs) were used as wall materials for the blue colorant produced from the crosslinking between genipin and milk proteins. The impact of using fructooligosaccharides (FOS) with DP = 5 and inulins with DP ≥ 10 (GR-In) and DP ≥ 23 (HP-In) on the physical (microstructure, size, water activity, wettability, solubility, water adsorption, glass transition temperature, and color), chemical (free genipin retention and moisture), and technological (colorant power, pH stability, and thermal stability) properties of the powdered blue colorant was examined. Inulins were more efficient carriers as seen from the physical characteristics of the microparticles. FOS and GR-In promoted higher retention of free genipin than HP-In. Additionally, their lower DP influenced the rehydration proprieties as well as the color intensity and colorant power. The DP did not affect the physical stability of the colorant at different pH conditions or at high temperature. Our findings demonstrated that the DP of the fructan exhibited a strong impact on the blue intensity of the samples and also their rehydration capacity.


Assuntos
Corantes/química , Frutanos/química , Iridoides/química , Proteínas do Leite/química , Fenômenos Químicos , Humanos , Inulina/química , Oligossacarídeos/química , Tamanho da Partícula , Polimerização , Pós/química , Solubilidade , Temperatura , Água , Molhabilidade
3.
Ultrason Sonochem ; 66: 105068, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32224449

RESUMO

This study presents the production of a novel natural blue colorant obtained from the cross-linking between milk proteins and genipin assisted by low-frequency and high-power ultrasound technology. Genipin was extracted from unripe Genipa americana L. using milk as a solvent. Also, milk colloidal system was used as a reaction medium and carrier for the blue color compounds. The effects of ultrasound nominal power (100, 200, 300, and 400 W) on the blue color formation kinetics in milk samples were evaluated at 2, 24, and 48 h of cold storage in relation to their free-genipin content and color parameters. In addition, Fourier transform infrared (FTIR) spectrum, droplet size distribution, microstructure, and kinetic stability of the blue colorant-loaded milk samples were assessed. Our results have demonstrated that the ultrasound technology was a promising and efficient technique to obtain blue colorant-loaded milk samples. One-step acoustic cavitation assisted the genipin extraction and its diffusion into the milk colloidal system favoring its cross-linking with milk proteins. Ultrasound process intensification by increasing the nominal power promoted higher genipin recovery resulting in bluer milk samples. However, the application of high temperatures associated with intensified acoustic cavitation processing favored the occurrence of non-enzymatic browning due to the formation of complex melanin substances from the Maillard reaction. Also, the blue milk samples were chemically stable since their functional groups were not modified after ultrasound processing. Likewise, all blue colorant-loaded milk samples were kinetically stable during their cold storage. Therefore, a novel natural blue colorant with high-potential application in food products like ice creams, dairy beverages, bakery products, and candies was produced.


Assuntos
Produtos Biológicos/química , Corantes/química , Leite/química , Rubiaceae/química , Ondas Ultrassônicas , Animais , Cinética , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA