Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Death Dis ; 15(10): 724, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358322

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly malignant disease with high death rates that have remained substantially unaltered for decades. Therefore, new treatment approaches are urgently needed. Human papillomavirus-negative tumors harbor areas of terminally differentiated tissue that are characterized by cornification. Dissecting this intrinsic ability of HNSCC cells to irreversibly differentiate into non-malignant cells may have tumor-targeting potential. We modeled the cornification of HNSCC cells in a primary spheroid model and analyzed the mechanisms underlying differentiation by ATAC-seq and RNA-seq. Results were verified by immunofluorescence using human HNSCC tissue of distinct anatomical locations. HNSCC cell differentiation was accompanied by cell adhesion, proliferation stop, diminished tumor-initiating potential in immunodeficient mice, and activation of a wound-healing-associated signaling program. Small promoter accessibility increased despite overall chromatin closure. Differentiating cells upregulated KRT17 and cornification markers. Although KRT17 represents a basal stem cell marker in normal mucosa, we confirm KRT17 to represent an early differentiation marker in HNSCC tissue. Cornification was frequently found surrounding necrotic areas in human tumors, indicating an involvement of pro-inflammatory stimuli. Indeed, inflammatory mediators activated the differentiation program in primary HNSCC cells. In HNSCC tissue, distinct cell differentiation states were found to create a common tissue architecture in normal mucosa and HNSCCs. Our data demonstrate a loss of cell malignancy upon faithful HNSCC cell differentiation, indicating that targeted differentiation approaches may be therapeutically valuable. Moreover, we describe KRT17 to be a candidate biomarker for HNSCC cell differentiation and early tumor detection.


Assuntos
Diferenciação Celular , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Camundongos , Epigênese Genética , Linhagem Celular Tumoral , Mucosa/patologia , Mucosa/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
Front Plant Sci ; 15: 1412189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290728

RESUMO

Hydrangea serrata, also knowen as the Japanese tea hortensia, is known for its sweet taste and health properties of bevarages produced from this plant. The H. serrata 3,4-dihydroisocoumarins, hydrangenol and phyllodulcin harbour a variety of biological activities and pharmacological properties. Therefore, a detailed understanding of dihydroisocoumarin biosynthesis in H. serrata is of major interest. Their biosynthesis is assumed to be enhanced by elicitors and mediated by polyketide synthases like in cases of phenylpropanoid derived phytoalexins. A de-novo transcriptome assembly of leaves and roots from the aluminium chloride treatment group versus the control group alongside with annotation was generated. Secondary plant metabolites were analysed by LC-MS. It revealed that a terpene synthase and a triterpenoid synthase gene as well as lignin biosynthesis encoding genes were upregulated in roots. Many genes for transporters, glycosyl, and other transferases as well as glycosylases were found to be differentially expressed in both organs. As no differentially expressed polyketide synthase gene homolog was found, the relative leaf and root 3,4-dihydroisocoumarin content was analysed by LC-MS measurement. Although Hydrangea species are known for their aluminium detoxification using phenylpropanoid-derived compounds, the levels of 3,4- dihydroisocoumarins were not enhanced. In this metabolite analysis, an organ- specific accumulation profile of hydrangenol, phyllodulcin, hydrangeic acid and their mono- and di-glycosides was figured out.

3.
Clin Cardiol ; 45(10): 1029-1035, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35864729

RESUMO

OBJECTIVES: We aimed to assess the relationship of left atrial appendage (LAA) fibrosis with atrial fibrillation (AF) and postoperative events in patients receiving coronary artery bypass graft surgery (CABG). BACKGROUND: Increased atrial fibrosis has been associated with AF and worse outcome following catheter ablation. Only limited data exists focusing on the impact of LAA fibrosis on AF after CABG. METHODS: LAA tissue from 164 CABG-patients was stained with Masson-Goldner trichrome. The histological landscape was scanned and segmented into superpixels for software analysis (QuPath). A classification algorithm was extensively trained to detect fibrotic superpixels for quantification. In 43 propensity score matched pairs with AF or sinus rhythm (SR), LAA fibrosis was compared. Moreover, subgroups of mitral valve regurgitation (MR) were analyzed as follows: SR, SR + MR, AF and AF + MR. The predictive value of LAA fibrosis postoperative stroke, postoperative AF and mortality was assessed. RESULTS: Fibrotic remodeling (%) showed no significant difference for the total cohort between the SR and AF group (SR: 30.8 ± 11.4% and AF: 33.8 ± 16.0%, respectively, p = .32). However, significant fibrotic remodeling was observed for SR and AF subgroups (SR: 27.2 ± 12.2% vs. AF: 35.3 ± 13.7%; respectively, p = .049) and between SR and SR + MR subgroups (SR: 27.2 ± 12.2% vs. SR + MR: 34.9 ± 9.1%, respectively, p = .027). LAA fibrosis was not significantly associated with postoperative stroke, postoperative AF or overall mortality (all p > .05). CONCLUSION: LAA fibrosis may contribute to an individual arrhythmia substrate for AF in patients with AF but also in those with SR and coincidence of MR. LAA fibrosis was not found to be predictive for clinical events in patients after CABG.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Insuficiência da Valva Mitral , Acidente Vascular Cerebral , Apêndice Atrial/diagnóstico por imagem , Fibrilação Atrial/complicações , Fibrilação Atrial/etiologia , Ponte de Artéria Coronária/efeitos adversos , Fibrose , Humanos , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/cirurgia , Acidente Vascular Cerebral/etiologia
4.
J Cancer Res Clin Oncol ; 148(2): 351-360, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839410

RESUMO

PURPOSE: Most cancer-related deaths worldwide are associated with lung cancer. Subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (AC) and squamous cell carcinoma (SqCC) is of importance, as therapy regimes differ. However, conventional staining and immunohistochemistry have their limitations. Therefore, a spatial metabolomics approach was aimed to detect differences between subtypes and to discriminate tumor and stroma regions in tissues. METHODS: Fresh-frozen NSCLC tissues (n = 35) were analyzed by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of small molecules (< m/z 1000). Measured samples were subsequently stained and histopathologically examined. A differentiation of subtypes and a discrimination of tumor and stroma regions was performed by receiver operating characteristic analysis and machine learning algorithms. RESULTS: Histology-guided spatial metabolomics revealed differences between AC and SqCC and between NSCLC tumor and tumor microenvironment. A diagnostic ability of 0.95 was achieved for the discrimination of AC and SqCC. Metabolomic contrast to the tumor microenvironment was revealed with an area under the curve of 0.96 due to differences in phospholipid profile. Furthermore, the detection of NSCLC with rarely arising mutations of the isocitrate dehydrogenase (IDH) gene was demonstrated through 45 times enhanced oncometabolite levels. CONCLUSION: MALDI-MSI of small molecules can contribute to NSCLC subtyping. Measurements can be performed intraoperatively on a single tissue section to support currently available approaches. Moreover, the technique can be beneficial in screening of IDH-mutants for the characterization of these seldom cases promoting the development of treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/classificação , Neoplasias Pulmonares/classificação , Metabolômica/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Técnicas Citológicas/métodos , Feminino , Alemanha , Humanos , Imuno-Histoquímica/métodos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Lab Invest ; 101(9): 1281-1288, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34021261

RESUMO

Urachal adenocarcinomas (UrC) are rare but aggressive. Despite being of profound therapeutic relevance, UrC cannot be differentiated by histomorphology alone from other adenocarcinomas of differential diagnostic importance. As no reliable tissue-based diagnostic biomarkers are available, we aimed to detect such by integrating mass-spectrometry imaging-based metabolomics and digital pathology, thus allowing for a multimodal approach on the basis of spatial information. To achieve this, a cohort of UrC (n = 19) and colorectal adenocarcinomas (CRC, n = 27) as the differential diagnosis of highest therapeutic relevance was created, tissue micro-arrays (TMAs) were constructed, and pathological data was recorded. Hematoxylin and eosin (H&E) stained tissue sections were scanned and annotated, enabling an automized discrimination of tumor and non-tumor areas after training of an adequate algorithm. Spectral information within tumor regions, obtained via matrix-assisted laser desorption/ionization (MALDI)-Orbitrap-mass spectrometry imaging (MSI), were subsequently extracted in an automated workflow. On this basis, metabolic differences between UrC and CRC were revealed using machine learning algorithms. As a result, the study demonstrated the feasibility of MALDI-MSI for the evaluation of FFPE tissue in UrC and CRC with the potential to combine spatial metabolomics data with annotated histopathological data from digitalized H&E slides. The detected Area under the curve (AUC) of 0.94 in general and 0.77 for the analyte taurine alone (diagnostic accuracy for taurine: 74%) makes the technology a promising tool in this differential diagnostic dilemma situation. Although the data has to be considered as a proof-of-concept study, it presents a new adoption of this technology that has not been used in this scenario in which reliable diagnostic biomarkers (such as immunohistochemical markers) are currently not available.


Assuntos
Metabolômica/métodos , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias da Bexiga Urinária , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Análise Multivariada , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA