RESUMO
Segmented all-electron basis sets of double and triple zeta valence qualities plus polarization functions (DZP and TZP) for the elements Fr, Ra, and Ac to be used with the zeroth-order regular approximation (ZORA) were presented. These sets were constructed from the reoptimization of the contraction coefficients of the corresponding non-relativistic basis sets. In order to adequately describe electrons distant from the atomic nuclei, these sets were augmented with diffuse functions and were, respectively, designated as ADZP-ZORA and ATZP-ZORA. At the ZORA-B3LYP theory level, the relativistic sets were employed to calculate ionization energies of Fr, Ra, and Ac as well as bond lengths, dissociation energies, harmonic vibrational frequencies, and static mean dipole polarizabilities of some diatomics. Comparing with benchmark theoretical results and with experimental data available in the literature, it can be verified that our basis sets are able to produce reliable and accurate results. Evaluation of the performances of ZORA and second-order Douglas-Kroll-Hess Hamiltonians was performed.
Assuntos
Elétrons , VibraçãoRESUMO
From the segmented all-electron basis set of double zeta valence quality plus polarization functions (DZP) for the elements from H to Xe, the zeroth-order regular approximation (ZORA) is used to generate a DZP-ZORA basis set, i.e., the contraction coefficients of the DZP set are re-optimized using the minimum ZORA energy criterion. To properly describe electrons distant from the nuclei, a diffuse function is added to each atomic symmetry (s, p, d, and f). The later basis set is designated as DZP-ZORA augmented. To test the effectiveness of the basis sets developed in this work, calculations of ionization energies and mean dipole polarizabilities of some elements are performed using the ZORA-CCSD(T) method. At the same level of theory, bond lengths, dissociation energies, and harmonic vibrational frequencies of some diatoms are also reported. Comparison with experimental data and recommended values available in the literature is made. Except for polarizability, scalar relativistic effects are estimated for the other properties. The performances of the ZORA and second-order Douglas-Kroll-Hess Hamiltonians are evaluated.
RESUMO
Density function theory calculations of frequency dependent optical rotations ([alpha]omega) for 30 rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the augmented double zeta valence quality plus polarization functions (ADZP) basis set and the BP86 nonhybrid and B3LYP hybrid functionals. Gauge-invariant atomic orbitals were used to guarantee origin-independent values of [alpha]D. Comparison between corresponding results obtained with nonhybrid and hybrid functionals as well as with theoretical optical rotations reported in the literature is done. Excited electronic states of three molecules are also discussed in light of circular dichroism spectra and B3LYP and BP86 calculated excitation energies and rotatory strengths. One verifies that the B3LYP/ADZP results are in better agreement with experiment.