Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
2.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29514966

RESUMO

As population-level patterns of interest in forests emerge from individual vital rates, modelling forest dynamics requires making the link between the scales at which data are collected (individual stems) and the scales at which questions are asked (e.g. populations and communities). Structured population models (e.g. integral projection models (IPMs)) are useful tools for linking vital rates to population dynamics. However, the application of such models to forest trees remains challenging owing to features of tree life cycles, such as slow growth, long lifespan and lack of data on crucial ontogenic stages. We developed a survival model that accounts for size-dependent mortality and a growth model that characterizes individual heterogeneity. We integrated vital rate models into two types of population model; an analytically tractable form of IPM and an individual-based model (IBM) that is applied with stochastic simulations. We calculated longevities, passage times to, and occupancy time in, different life cycle stages, important metrics for understanding how demographic rates translate into patterns of forest turnover and carbon residence times. Here, we illustrate the methods for three tropical forest species with varying life-forms. Population dynamics from IPMs and IBMs matched a 34 year time series of data (albeit a snapshot of the life cycle for canopy trees) and highlight differences in life-history strategies between species. Specifically, the greater variation in growth rates within the two canopy species suggests an ability to respond to available resources, which in turn manifests as faster passage times and greater occupancy times in larger size classes. The framework presented here offers a novel and accessible approach to modelling the population dynamics of forest trees.


Assuntos
Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Demografia , Modelos Biológicos , Panamá , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA