Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(40): e2400650, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38566534

RESUMO

Holey graphenic nanomaterials with porosity within the basal plane attract significant interest. It is observed that the perforation of graphene can enhance the specific surface area of the nanosheet, ensuring effective wetting and penetration of electrolytes to the electrode surface, facilitating rapid charge transfer, and boosting the electrocatalytic efficacy of the transducers. This study reports the first example of nitrogen-doped holey reduced graphene oxide with a mesoporous morphology of the graphene basal plane (N-MHG). It is shown that N-MHG can be synthesized through a one-step hydrothermal treatment of GO using NH3 and H2O2. A straightforward procedure for the purification of N-MHG has also been developed. AFM, TEM, and Raman analyses have revealed that N-MHG possesses a highly mesoporous network structure with a pore size ranging from 10 to 50 nm. X-ray photoelectron spectroscopy data have indicated a partial reduction of the graphene oxide sheets during the etching process but also show a 3-5 times higher content of C═O and O-C═O fragments compared to rGO. This could account for the remarkable stability of the N-MHG aqueous suspension. An electrochemical sensor for dopamine analysis is assembled on a glassy carbon electrode with N-MHG/Nafion membrane and characterized by cyclic voltammetry and electrochemical impedance spectroscopy.

2.
Pharmaceutics ; 14(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365077

RESUMO

The development of X-ray-absorbing scintillating nanoparticles is of high interest for solving the short penetration depth problem of visible and infrared light in photodynamic therapy (PDT). Thus, these nanoparticles are considered a promising treatment for several types of cancer. Herein, gadolinium oxide nanoparticles doped with europium ions (Gd2O3:Eu3+) were obtained by using polyvinyl alcohol as a capping agent. Hybrid silica nanoparticles decorated with europium-doped gadolinium oxide (SiO2-Gd2O3:Eu3+) were also prepared through the impregnation method. The synthesized nanoparticles were structurally characterized and tested to analyze their biocompatibility. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy confirmed the high crystallinity and purity of the Gd2O3:Eu3+ particles and the homogeneous distribution of nanostructured rare earth oxides throughout the fumed silica matrix for SiO2-Gd2O3:Eu3+. Both nanoparticles displayed stable negative ζ-potentials. The photoluminescence properties of the materials were obtained using a Xe lamp as an excitation source, and they exhibited characteristic Eu3+ bands, including at 610 nm, which is the most intense transition band of this ion. Cytotoxicity studies on mouse glioblastoma GL261 cells indicated that these materials appear to be nontoxic from 10 to 500 µg·mL-1 and show a small reduction in viability in non-tumor cell lines. All these findings demonstrate their possible use as alternative materials in PDT.

3.
J Hazard Mater ; 408: 124976, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33429146

RESUMO

Composition of the immobilized layer plays a crucial role in metal adsorption properties of complexing organo-mineral materials. Ignoring the specific features of chemical reactions on solid surface can lead to a significant deterioration in the target properties of the resulted materials. In this research we demonstrated that rationally designed surface-assembling synthesis of organo-silica with covalently immobilized fragments of dipicolinic acid (DPA) resulted in the adsorbent that is capable quantitively recover almost all Rare Earth elements (REEs) from multielement solution with pH > 1.7. In ten consecutive adsorption/desorption cycles no noticeable loss of its efficiency was found, with a mean value of REEs recovery larger than 97%. The adsorbent has been used to recover REEs from model solutions (22 metal ions in 0.5 mol L-1 NaCl) and real leaching solution of waste of fluorescent lamps. It was demonstrated that even 3200-fold excess of Fe and Cu ions only slightly reduces REEs recovery. The adsorbent is capable to recover above 80% of all (except La) REEs from acidic leaching solution from fluorescent lamps with enrichment factors above 600. After adsorption of Eu3+ and Tb3+, the resulting materials exhibited strong red and green luminescence, respectively, indicating chelating mechanism of REEs adsorption on SiO2-DPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA